Skip to main content

Nanoscale Structures and Pseudogap in Under-doped High-Tc Superconductors

  • Chapter
  • First Online:
  • 1347 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We show that superconductor–insulator transitions in oxides and FeAs-based high Tc superconducting multilayers may arise due to a charge density wave instability induced by charged impurities and the over-screening of the long-ranged part of the Coulomb interaction, which is enhanced due to decreasing carrier density [1]. When the carrier density is low enough, impurities begin to trap particles and form bound states of clusters of charge carriers, which we call Coulomb bubbles. These bubbles are embedded inside the superconductor and form nuclei of the new insulating state. The growth of a bubble is terminated by the Coulomb force and each of them has a quantized charge and a fluctuating phase. When clusters first appear, they are covered by superfluid liquid due to the proximity effect and invisible. However, when the carrier density decreases the size of bubbles increases and the superconducting proximity inside them vanishes. The insulating state arises via a percolation of these insulating islands, which form a giant percolating cluster that prevents the flow of the electrical supercurrent through the system. We also show the formation of two groups of charge carriers in these compounds associated with free and localized states. The localized component arises due to the Coulomb bubbles. Our results are consistent with the two-component picture for cuprates deducted earlier by Gorkov and Teitelbaum [2] from the analysis of the Hall effect data and ARPES spectra. The Coulomb clusters induce nanoscale superstructures observed in scanning tunneling microscope (STM) experiments [3] and are responsible for the pseudogap [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Kusmartsev, M. Saarela, Supercond. Sci. Technol. 22, 014008 (2009)

    Article  ADS  Google Scholar 

  2. L.P. Gorkov, G.B. Teitelbaum, Phys. Rev. Lett. 97, 247003 (2006)

    Article  ADS  Google Scholar 

  3. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J.W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D.H. Lee, J.C. Davis, Nature, 454, 1072 (2008)

    Article  ADS  Google Scholar 

  4. T. Kondo, R. Khasanov, T. Takeuchi, J. Schmalian, A. Kaminski, Nature, 457, 376 (2009)

    Article  Google Scholar 

  5. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part II (Nauka, Moscow, 1978)

    Google Scholar 

  7. K.K. Gomes et al., Nature, 447, 569 (2007)

    Article  ADS  Google Scholar 

  8. J. Lee et al., Nature, 442, 546 (2006)

    Article  ADS  Google Scholar 

  9. K. McElroy, J. Lee, J.A. Slezak, D.H. Lee, H. Eisaki, S. Uchida, J.C. Davis, Science, 309, 1048 (2005)

    Article  ADS  Google Scholar 

  10. J.X. Zhu, K. McElroy, J. Lee, T.P. Devereaux, Q. Si, J.C. Davis, A.V. Balatsky, Phys. Rev. Lett. 97, 177001 (2006)

    Article  ADS  Google Scholar 

  11. L.P. Gorkov, G.B. Teitelbaum, J. Phys.: Conf. Ser. 108, 012009 (2008)

    Google Scholar 

  12. F. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  13. M. Saarela, T. Taipaleenmäki, F.V. Kusmartsev, J. Phys. A 36, 9223 (2003)

    Article  MATH  ADS  Google Scholar 

  14. F. Kusmartsev, M. Saarela, J. Phys.: Conf. Ser. 108, 012029 (2008)

    Google Scholar 

  15. E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969)

    Google Scholar 

  16. V. Apaja, J. Halinen, V. Halonen, E. Krotscheck, M. Saarela, Phys. Rev. B 55, 12925 (1997)

    Article  ADS  Google Scholar 

  17. M. Saarela, E. Krotscheck, J. Low Temp. Phys. 90, 415 (1993)

    Article  ADS  Google Scholar 

  18. E. Krotscheck, M. Saarela, Phys. Rep. 232, 1 (1993)

    Article  ADS  Google Scholar 

  19. S. Ono, et al., Phys. Rev. B 75, 024515 (2007)

    Article  ADS  Google Scholar 

  20. T. Nishikawa et al., J. Phys. Soc. Jpn. 63, 1441 (1994)

    Article  ADS  Google Scholar 

  21. T. Yoshida et al., Phys. Rev. Lett. 91, 027001 (2003)

    Article  ADS  Google Scholar 

  22. Y. Kohsaka et al., Phys. Rev. Lett. 93, 097004 (2004)

    Article  ADS  Google Scholar 

  23. Y. Kohsaka et al., Science, 315, 13801385 (2007)

    Article  Google Scholar 

  24. W.J. Padilla, Y.S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S. Komiya, Y. Ando, D.N. Basov, Phys. Rev. B 72, 060511 (2005)

    Article  ADS  Google Scholar 

  25. C.Y. Chen et al., Phys. Rev. B 43, 392 (1991)

    Article  ADS  Google Scholar 

  26. B. Sipos, A.F. Kusmartseva et al., Nat. Mater. 7, 960 (2008)

    Article  ADS  Google Scholar 

  27. R.A. Cooper et al., Science, 323, 603 (2009)

    Article  ADS  Google Scholar 

  28. F.V. Kusmartsev, D. Di Castro, G. Bianconi, A. Bianconi, Phys. Lett. A 275, 118 (2000)

    Article  ADS  Google Scholar 

  29. G. Yu et al., Phys. Rev. B 48, 7545 (1993)

    Article  ADS  Google Scholar 

  30. D. Mihailovic, T. Mertelj, K.A. Mueller, Phys. Rev. B 57, 6116 (1998)

    Article  ADS  Google Scholar 

  31. S.H. Pan et al., Nature, 413, 282 (2001)

    Article  ADS  Google Scholar 

  32. Y. Dubi, Y. Meir, Y. Avishai, Nature, 449, 876 (2007)

    Article  ADS  Google Scholar 

  33. F.V. Kusmartsev, J. de Physique IV, 9, 321 (1999)

    Google Scholar 

  34. F.V. Kusmartsev, Phys. Rev. Lett. 84, 530 (2000)

    Article  ADS  Google Scholar 

  35. F.V. Kusmartsev, Int. J. Mod. Phys. B 14, 3530 (2000)

    Article  ADS  Google Scholar 

  36. A. Bianconi et al., Solid State Commun. 63, 1009 (1987)

    Article  ADS  Google Scholar 

  37. F.V. Kusmartsev, Contemp. Phys. 453, 237 (2004)

    ADS  Google Scholar 

  38. G.F. Chen, Z. Li, D. Wu, G. Li, W.Z. Hu, J. Dong, P. Zheng, J.L. Luo, N.L. Wang, Phys. Rev. Lett. 100, 247002 (2008)

    Article  ADS  Google Scholar 

  39. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  40. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature, 453, 376 (2008)

    Article  ADS  Google Scholar 

  41. H. Wen, G. Mu, L. Fang, H. Yang, X. Zhu, Europhys. Lett. 82, 17009 (2008)

    Article  ADS  Google Scholar 

  42. Z.A. Ren, J. Yang, W. Lu, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, Z.X. Zhao, Europhys. Lett. 82, 57002 (2008)

    Article  ADS  Google Scholar 

  43. Z.A. Ren, G.C. Che, X.L. Dong, J. Yang, W. Lu, W. Yi, X.L. Shen, Z.C. Li, L.L. Sun, F. Zhou, Z.X. Zhao, Europhys. Lett. 83, 17002 (2008)

    Article  ADS  Google Scholar 

  44. Z.A. Ren, J. Yang, W. Lu, W. Yi, G.C. Che, X.L. Dong, L.L. Sun, , Z.X. Zhao, Mater. Sci. Innov. 12, 1 (2008)

    Google Scholar 

  45. X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Nature, 453, 761 (2008)

    Article  ADS  Google Scholar 

  46. C.H. Lee, T. Ito, A. Iyo, H. Eisaki, H. Kito, M.T. Fernandez-Diaz, K. Kihou, H. Matsuhata, M. Braden, K. Yamada, J. Phys. Soc. Jpn. 77, 083704 (2008)

    Article  ADS  Google Scholar 

  47. M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saarela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saarela, M., Kusmartsev, F.V. (2010). Nanoscale Structures and Pseudogap in Under-doped High-Tc Superconductors. In: Moshchalkov, V., Woerdenweber, R., Lang, W. (eds) Nanoscience and Engineering in Superconductivity. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15137-8_8

Download citation

Publish with us

Policies and ethics