Advertisement

An Alternative to Error Correction for SRAM-Like PUFs

  • Maximilian Hofer
  • Christoph Boehm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6225)

Abstract

We propose a new technique called stable-PUF-marking as an alternative to error correction to get reproducible (i.e. stable) outputs from physical unclonable functions (PUF). The concept is based on the influence of the mismatch on the stability of the PUF-cells’ output. To use this fact, cells providing a high mismatch between their crucial transistors are selected to substantially lower the error rate. To verify the concept, a statistical view to this approach is given. Furthermore, an SRAM-like PUF implementation is suggested that puts the approach into practice.

Keywords

Physical Unclonable Functions SRAM Pre-Selection 

References

  1. 1.
    Pappu, R., Recht, R., Taylor, J., Gershenfeld, N.: Physical one-way function. Science 297(5589), 2026–2030 (2002)CrossRefGoogle Scholar
  2. 2.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: CCS ’02: Proceedings of the 9th ACM conference on Computer and communications. security, pp. 148–160 (2002)Google Scholar
  3. 3.
    Blaise, G., Daihyun, L., Dwaine, C., van Dijk, M., Srinivas, D.: Identification and a2thentication of integrated circuits. Concurrency Computation: Pract. Exper. 16, 1077–1098 (2004)CrossRefGoogle Scholar
  4. 4.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Boehm, C., Hofer, M.: Using SRAMs as Physical Unclonable Functions. In: Proceedings of the 17th Austrian Workshop on Microelectronics - Austrochip, pp. 117–122 (2009)Google Scholar
  6. 6.
    Ying, S., Holleman, J., Otis, B.P.: A Digital 1.6 pJ/bit Chip Identification Circuit Using Process Variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 523–540. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hong, J., Vitterli, M.: Simple Algorithms for BCH Decoding. IEEE Transactions of Communications 43, 2324–2333 (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Boesch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient Helper Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Pelgrom, M., Duinmaijer, A., Welbers, A.: Matching Properties of MOS-Transistors. IEEE Journal of Solid-State Circuits 24, 1433–1440 (1989)CrossRefGoogle Scholar
  12. 12.
    Pelgrom, M.J.M., Tuinhout, H.P., Vertregt, M.: Transistor matching in analog CMOS applications. In: International Electron Devices Meeting, IEDM ’98 Technical Digest., pp. 915–918 (1998)Google Scholar
  13. 13.
    Mizuno, T., Okumtura, J., Toriumi, A.: Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Transactions on Electron Devices 41, 2216–2221 (1994)CrossRefGoogle Scholar
  14. 14.
    Tsividis, Y.: The MOS Transistor. Oxford University Pres, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maximilian Hofer
    • 1
  • Christoph Boehm
    • 1
  1. 1.Institute of ElectronicsGraz University of Technology 

Personalised recommendations