Skip to main content

Fixed-Point Definability and Polynomial Time on Chordal Graphs and Line Graphs

  • Chapter
Book cover Fields of Logic and Computation

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6300))

Abstract

The question of whether there is a logic that captures polynomial time was formulated by Yuri Gurevich in 1988. It is still wide open and regarded as one of the main open problems in finite model theory and database theory. Partial results have been obtained for specific classes of structures. In particular, it is known that fixed-point logic with counting captures polynomial time on all classes of graphs with excluded minors. The introductory part of this paper is a short survey of the state-of-the-art in the quest for a logic capturing polynomial time.

The main part of the paper is concerned with classes of graphs defined by excluding induced subgraphs. Two of the most fundamental such classes are the class of chordal graphs and the class of line graphs. We prove that capturing polynomial time on either of these classes is as hard as capturing it on the class of all graphs. In particular, this implies that fixed-point logic with counting does not capture polynomial time on these classes. Then we prove that fixed-point logic with counting does capture polynomial time on the class of all graphs that are both chordal and line graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Vianu, V.: Non-deterministic languages to express deterministic transformations. In: Proceedings of the 9th ACM Symposium on Principles of Database Systems, pp. 218–229 (1990)

    Google Scholar 

  2. Aho, A., Ullman, J.: The universality of data retrieval languages. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages, pp. 110–120 (1979)

    Google Scholar 

  3. Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: Proceedings of the 14th ACM Symposium on Theory of Computing, pp. 310–324 (1982)

    Google Scholar 

  4. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proceedings of the 15th ACM Symposium on Theory of Computing, pp. 171–183 (1983)

    Google Scholar 

  5. Beineke, L.: Characterizations of derived graphs. Journal of Combinatorial Theory 9, 129–135 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure and Applied Logic 100, 141–187 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over unordered structures. Journal of Symbolic Logic 67, 1093–1125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12, 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of Computer and System Sciences 25, 99–128 (1982)

    Article  MATH  Google Scholar 

  11. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Webb, B. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 153–171. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  13. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dawar, A.: Generalized quantifiers and logical reducibilities. Journal of Logic and Computation 5, 213–226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dawar, A.: A restricted second order logic for finite structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Dawar, A., Grohe, M., Holm, B., Laubner, B.: Logics with rank operators. In: Proceedings of the 24th IEEE Symposium on Logic in Computer Science, pp. 113–122 (2009)

    Google Scholar 

  17. Dawar, A., Hella, L.: The expressive power of finitely many generalized quantifiers. In: Proceedings of the 9th IEEE Symposium on Logic in Computer Science (1994)

    Google Scholar 

  18. Dawar, A., Richerby, D.: A fixed-point logic with symmetric choice. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 169–182. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Dawar, A., Richerby, D., Rossman, B.: Choiceless polynomial time, counting and the Cai-Fürer-Immerman graphs: (Extended abstract). Electronic Notes on Theoretical Compututer Science 143, 13–26 (2006)

    Article  MATH  Google Scholar 

  20. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  21. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  22. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  23. Evdokimov, S., Karpinski, M., Ponomarenko, I.: On a new high dimensional Weisfeiler-Lehman algorithm. Journal of Algebraic Combinatorics 10, 29–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evdokimov, S., Ponomarenko, I.: On highly closed cellular algebras and highly closed isomorphism. Electronic Journal of Combinatorics 6, #R18 (1999)

    Google Scholar 

  25. Fagin, R.: Generalized first–order spectra and polynomial–time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

    Google Scholar 

  26. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 236–243 (1980)

    Google Scholar 

  27. Gire, F., Hoang, H.: An extension of fixpoint logic with a symmetry-based choice construct. Information and Computation 144, 40–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  29. Grädel, E., Otto, M.: On Logics with Two Variables. Theoretical Computer Science 224, 73–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grohe, M.: Fixed-point logics on planar graphs. In: Proceedings of the 13th IEEE Symposium on Logic in Computer Science, pp. 6–15 (1998)

    Google Scholar 

  31. Grohe, M.: Definable tree decompositions. In: Proceedings of the 23rd IEEE Symposium on Logic in Computer Science, pp. 406–417 (2008)

    Google Scholar 

  32. Grohe, M.: The quest for a logic capturing PTIME. In: Proceedings of the 23rd IEEE Symposium on Logic in Computer Science, pp. 267–271 (2008)

    Google Scholar 

  33. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science (2010) (to appear)

    Google Scholar 

  34. Grohe, M., Mariño, J.: Definability and descriptive complexity on databases of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 70–82. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  35. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S. (eds.) Finite Model Theory and Its Applications, pp. 125–230. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.) Current trends in theoretical computer science, pp. 1–57. Computer Science Press, Rockville (1988)

    Google Scholar 

  38. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Transaction on Computational Logic 1, 77–111 (2000)

    Article  MathSciNet  Google Scholar 

  39. Gurevich, Y., Shelah, S.: Fixed point extensions of first–order logic. Annals of Pure and Applied Logic 32, 265–280 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hella, L.: Definability hierarchies of generalized quantifiers. Annals of Pure and Applied Logic 43, 235–271 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hella, L., Kolaitis, P., Luosto, K.: Almost everywhere equivalence of logics in finite model theory. Bulletin of Symbolic Logic 2, 422–443 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hopcroft, J. E., Wong, J.: Linear time algorithm for isomorphism of planar graphs. In: Proceedings of the 6th ACM Symposium on Theory of Computing, pp. 172–184 (1974)

    Google Scholar 

  43. Hopcroft, J.E., Tarjan, R.: Isomorphism of planar graphs (working paper). In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. Plenum Press, New York (1972)

    Google Scholar 

  44. Immerman, N.: Relational queries computable in polynomial time. Information and Control 68, 86–104 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Immerman, N.: Expressibility as a complexity measure: results and directions. In: Proceedings of the 2nd IEEE Symposium on Structure in Complexity Theory, pp. 194–202 (1987)

    Google Scholar 

  46. Immerman, N.: Languages that capture complexity classes. SIAM Journal on Computing 16, 760–778 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  48. Immerman, N., Lander, E.: Describing graphs: A first-order approach to graph canonization. In: Selman, A. (ed.) Complexity theory retrospective, pp. 59–81. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  49. Köbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 216–227. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  50. Kreutzer, S.: Expressive equivalence of least and inflationary fixed-point logic. Annals of Pure and Applied Logic 130, 61–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Laubner, B.: Capturing polynomial time on interval graphs. In: Proceedings of the 25th IEEE Symposium on Logic in Computer Science (2010) (to appear)

    Google Scholar 

  52. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  53. Luks, E.: Isomorphism of graphs of bounded valance can be tested in polynomial time. Journal of Computer and System Sciences 25, 42–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  54. Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 225–235 (1980)

    Google Scholar 

  55. Otto, M.: Bounded variable logics and counting – A study in finite models. Lecture Notes in Logic, vol. 9. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  56. Otto, M.: Canonization for two variables and puzzles on the square. Annals of Pure and Applied Logic 85, 243–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Otto, M.: Bisimulation-invariant PTIME and higher-dimensional μ-calculus. Theoretical Computer Science 224, 237–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B 96, 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Roussopoulos, N.: A max {m,n} algorithm for determining the graph H from its line graph G. Information Processing Letters 2, 108–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vardi, M.: The complexity of relational query languages. In: Proceedings of the 14th ACM Symposium on Theory of Computing, pp. 137–146 (1982)

    Google Scholar 

  61. Verbitsky, O.: Planar graphs: Logical complexity and parallel isomorphism tests. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 682–693. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  62. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54, 150–168 (1932)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grohe, M. (2010). Fixed-Point Definability and Polynomial Time on Chordal Graphs and Line Graphs. In: Blass, A., Dershowitz, N., Reisig, W. (eds) Fields of Logic and Computation. Lecture Notes in Computer Science, vol 6300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15025-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15025-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15024-1

  • Online ISBN: 978-3-642-15025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics