Advertisement

Simplification of Jacobi Sets

  • Suthambhara NEmail author
  • Vijay Natarajan
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

The Jacobi set of two Morse functions defined on a 2-manifold is the collection of points where the gradients of the functions align with each other or where one of the gradients vanish. It describes the relationship between functions defined on the same domain, and hence plays an important role in multi-field visualization. The Jacobi set of twopiecewise linear functions may contain several components indicative of noisy or a feature-rich dataset. We pose the problem of simplification as the extraction oflevel sets and offset contours and describe an algorithm to compute and simplify Jacobi sets in a robust manner.

Keywords

Integer Linear Program Piecewise Linear Function Morse Theory Morse Function Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bennett, V. Pascucci, and K. Joy. Genus oblivious cross parameterization: Robust topological management of inter-surface maps. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, pages 238–247, Washington, DC, USA, 2007. IEEE Computer Society.Google Scholar
  2. 2.
    P-T Bremer, E. M. Bringa, M. A. Duchaineau, A. G. Gyulassy, D. Laney, A. Mascarenhas, and V. Pascucci. Topological feature extraction and tracking. Journal of Physics: Conference Series, 78:012007 (5pp), 2007.Google Scholar
  3. 3.
    T. Echekki and J. H. Chen. Direct numerical simulation of auto-ignition in inhomogeneous hydrogen-air mixtures. In Proceedings of the 2nd Joint Meeting U.S. Sections Combustion Institute, 2001.Google Scholar
  4. 4.
    H. Edelsbrunner and J. Harer. Jacobi set of multiple morse funtions. In Foundations of Computational Mathematics, Minneapolis, 2002, pages 37–57. Cambridge Univ. Press, 2004.Google Scholar
  5. 5.
    H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Local and global comparison of continuous functions. In Proceedings of the conference on Visualization ’04, pages 275–280, Washington, DC, USA, 2004. IEEE Computer Society.Google Scholar
  6. 6.
    H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, page 454, Washington, DC, USA, 2000. IEEE Computer Society.Google Scholar
  7. 7.
    M. Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In Proceedings of the thirteenth annual symposium on Computational geometry, pages 212–220, New York, NY, USA, 1997. ACM.Google Scholar
  8. 8.
    Y. Matsumoto. Introduction to Morse Theory. Translated from Japanese by K. Hudson and M. Saito. Amer. Math. Soc., 2002.Google Scholar
  9. 9.
    M. Meyer, M. Desbrun, P. schroder, and A. Barr. Discrete differential geometry operators for triangulated 2-manifolds. VisMath., 2002.Google Scholar
  10. 10.
    G. Reeb. Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une fonction numérique. Computes Rendus de L’Académie des Séances, 222:847–849, 1946.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Computer Science and AutomationBangaloreIndia
  2. 2.Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations