Skip to main content

Modeling and Simplifying Morse Complexes in Arbitrary Dimensions

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Ascending and descending Morse complexes, defined by a scalar function f over a manifold domain M, decompose M into regions of influence of the critical points of f, thus representing themorphology of the scalar function f over M in a compact way. Here, we introduce two simplification operators on Morse complexes which work in arbitrary dimensions and we discuss their interpretation as n-dimensional Euler operators. We consider a dual representation of the two Morse complexes in terms of an incidence graph and we describe how our simplification operators affect the graph representation. This provides the basis for defining a multi-scale graph-based model of Morse complexes in arbitrary dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Bajaj and D. R. Shikore. Topology Preserving Data Simplification with Error Bounds. Computers and Graphics, 22(1):3–12, 1998.

    Article  Google Scholar 

  2. T. Banchoff. Critical Points and Curvature for Embedded Polyhedral Surfaces. American Mathematical Monthly, 77(5):475–485, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in Higher Dimensions. In Proceedings IEEE Visualization 2000, pages 267–273. IEEE Computer Society, Oct. 2000.

    Google Scholar 

  4. S. Biasotti, L. De Floriani, B. Falcidieno, and L. Papaleo. Morphological Representations of Scalar Fields. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring, pages 185–213. Springer Verlag, 2008.

    Google Scholar 

  5. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A Topological Hierarchy for Functions on Triangulated Surfaces. Transactions on Visualization and Computer Graphics, 10(4):385–396, July/August 2004.

    Google Scholar 

  6. F. Cazals, F. Chazal, and T. Lewiner. Molecular Shape Analysis Based upon the Morse-Smale Complex and the Connolly Function. In Proceedings of the nineteenth Annual Symposium on Computational Geometry, pages 351–360, New York, USA, 2003. ACM Press.

    Google Scholar 

  7. L. Čomić and L. De Floriani. Cancellation of Critical Points in 2D and 3D Morse and Morse-Smale Complexes. In Discrete Geometry for Computer Imagery (DGCI), Lecture Notes in Computer Science, volume 4992, pages 117–128, Lyon, France, Apr 16-18 2008. Springer-Verlag GmbH.

    Google Scholar 

  8. E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological Analysis and Characterization of Discrete Scalar Fields. In T.Asano, R.Klette, and C.Ronse, editors, Theoretical Foundations of Computer Vision, Geometry, Morphology, and Computational Imaging, volume LNCS 2616, pages 386–402. Springer Verlag, 2003.

    Google Scholar 

  9. L. De Floriani and A. Hui. Shape Representations Based on Cell and Simplicial Complexes. In Eurographics 2007, State-of-the-art Report. September 2007.

    Google Scholar 

  10. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, Berlin, 1987.

    MATH  Google Scholar 

  11. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale Complexes for Piecewise Linear 3-Manifolds. In Proceedings 19th ACM Symposium on Computational Geometry, pages 361–370, 2003.

    Google Scholar 

  12. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. In Proceedings 17th ACM Symposium on Computational Geometry, pages 70–79, 2001.

    Google Scholar 

  13. R. Forman. Morse Theory for Cell Complexes. Advances in Mathematics, 134:90–145, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology Simplifying Multi-Resolution Isosurface Extraction. In Proceedings IEEE Visualization 2000, pages 259–266, 2000.

    Google Scholar 

  15. A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-Based Simplification for Feature Extraction from 3D Scalar Fields. In Proceedings IEEE Visualization’05, pages 275–280. ACM Press, 2005.

    Google Scholar 

  16. A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. A Topological Approach to Simplification of Three-Dimensional Scalar Functions. IEEE Transactions on Visualization and Computer Graphics, 12(4):474–484, 2006.

    Article  Google Scholar 

  17. T. Illetschko, A. Ion, Y. Haxhimusa, and W. G. Kropatsch. Collapsing 3D Combinatorial Maps. In F. Lenzen, O. Scherzer, and M. Vincze, editors, Proceedings of the 30th OEAGM Workshop, pages 85–93, Obergurgl, Austria, 2006. sterreichische Computer Gesellschaft.

    Google Scholar 

  18. P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. Extracting Terrain Morphology: A New Algorithm and a Comparative Evaluation. In 2nd International Conference on Computer Graphics Theory and Applications, pages 13–20, March 8–11 2007.

    Google Scholar 

  19. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1988.

    Google Scholar 

  20. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

    MATH  Google Scholar 

  21. X. Ni, M. Garland, and J. C. Hart. Fair Morse Functions for Extracting the Topological Structure of a Surface Mesh. In International Conference on Computer Graphics and Interactive Techniques ACM SIGGRAPH, pages 613–622, 2004.

    Google Scholar 

  22. V. Pascucci. Topology Diagrams of Scalar Fields in Scientific Visualization. In S. Rana, editor, Topological Data Structures for Surfaces, pages 121–129. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  23. S. Takahashi, T. Ikeda, T. L. Kunii, and M. Ueda. Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographic Elevation Data. In Computer Graphics Forum, volume 14, pages 181–192, 1995.

    Google Scholar 

  24. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological Volume Skeletonization and its Application to Transfer Function Design. Graphical Models, 66(1):24–49, 2004.

    Article  MATH  Google Scholar 

  25. G. H. Weber, G. Schueuermann, H. Hagen, and B. Hamann. Exploring Scalar Fields Using Critical Isovalues. In Proceedings IEEE Visualization 2002, pages 171–178. IEEE Computer Society, 2002.

    Google Scholar 

  26. G. H. Weber, G. Schueuermann, and B. Hamann. Detecting Critical Regions in Scalar Fields. In G.-P. Bonneau, S. Hahmann, and C. D. Hansen, editors, Proceedings Data Visualization Symposium, pages 85–94. ACM Press, New York, 2003.

    Google Scholar 

  27. C. Weigle and D.Banks. Extracting Iso-Valued Features in 4-dimensional Scalar Fields. In Proceedings IEEE Visualization 1998, pages 103–110. IEEE Computer Society, Oct. 1998.

    Google Scholar 

  28. G. W. Wolf. Topographic Surfaces and Surface Networks. In S. Rana, editor, Topological Data Structures for Surfaces, pages 15–29. John Wiley & Sons Ltd, 2004.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Science Foundation under grant CCF-0541032, by the MIUR-FIRB project SHALOM under contract number RBIN04HWR8, and by the Ministry of Science of the Republic of Serbia through Project 23036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Čomić, L., De Floriani, L. (2011). Modeling and Simplifying Morse Complexes in Arbitrary Dimensions. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_7

Download citation

Publish with us

Policies and ethics