Skip to main content

Topological Extraction and Tracking of Defects in Crystal Structures

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Interfaces between materials with different mechanical properties play an important role in technical applications. Nowadaysmolecular dynamics simulations are used to observe the behavior of such compound materials at the atomic level. Due to different atom crystal sizes,dislocations in the atom crystal structure occur once external forces are applied, and it has been observed that studying the change of thesedislocations can provide further understanding of macroscopic attributes like elasticity and plasticity. Standard visualization techniques such as the rendering of individual atoms work for 2D data or sectional views; however, visualizingdislocations in 3D using such methods usually fail due to occlusion and clutter. In this work we propose to extract and visualize the structure ofdislocations, which summarizes the commonly employed filtered atomistic renderings into a concise representation. The benefits of our approach are clearer images while retaining relevant data and easier visual tracking of topological changes over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pankaj K. Agarwal and Jiří Mataušek. Relative neighborhood graphs in three dimensions. In SODA ’92: Proceedings of the 3rd annual ACM-SIAM symposium on Discrete algorithms, pages 58–65, Philadelphia, USA, 1992. SIAM.

    Google Scholar 

  2. Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee Lee. Skeleton extraction by mesh contraction. ACM Trans. Graph., 27(3):1–10, 2008.

    Google Scholar 

  3. Vasily Bulatov, Farid F. Abraham, Ladislas Kubin, Benoit Devincre, and Sidney Yip. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature, 391:669–672, 1998.

    Article  Google Scholar 

  4. Vasily Bulatov and Wei Cai. Computer Simulation of Dislocations. Oxford University Press: Oxford, New York, 2006.

    Google Scholar 

  5. Vasily Bulatov, Wei Cai, Jeff Fier, Masato Hiratani, Gregg Hommes, Tim Pierce, Meijie Tang, Moono Rhee, Kim Yates, and Tom Arsenlis. Scalable Line Dynamics in ParaDiS. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 19, Washington, DC, USA, 2004. IEEE Computer Society.

    Google Scholar 

  6. Vasily V. Bulatov, Luke L. Hsiung, Meijie Tang, Athanasios Arsenlis, Maria C. Bartelt, Wei Cai, Jeff N. Florando, Masato Hiratani, Moon Rhee1, Gregg Hommes, Tim G. Pierce, and Tomas Diaz de la Rubia. Dislocation multi-junctions and strain hardening. Nature, 440:1174–1178, 2006.

    Google Scholar 

  7. Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions. Comput. Geom. Theory Appl., 24(2):75–94, 2003.

    Google Scholar 

  8. Nicu D. Cornea, Patrick Min, and Deborah Silver. Curve-Skeleton Properties, Applications, and Algorithms. IEEE Transactions on Visualization and Computer Graphics, 13(3):530–548, 2007.

    Article  Google Scholar 

  9. Herbert Edelsbrunner, John Harer, Ajith Mascarenhas, Valerio Pascucci, and Jack Snoeyink. Time-varying reeb graphs for continuous space–time data. Comput. Geom. Theory Appl., 41(3):149–166, 2008.

    Google Scholar 

  10. Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, and Bernd Hamann. A Topological Approach to Simplification of Three-Dimensional Scalar Functions. IEEE Transactions on Visualization and Computer Graphics, 12(4):474–484, 2006.

    Article  Google Scholar 

  11. C.S. Hartley and Y. Mishin. Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Materialia, 53:1313–1321, 2005.

    Article  Google Scholar 

  12. J. Dana Honeycutt and Hans C. Andersen. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91(19):4950–4963, 1987.

    Google Scholar 

  13. Peter Lipowsky, Mark J. Bowick, Jan H. Meinke, David R. Nelson, and Andreas R. Bausch. Direct visualization of dislocation dynamics in grain-boundary scars. Nature Materials, 4:407–411, 2005.

    Article  Google Scholar 

  14. Vijay Natarajan, Prof Herbert Edelsbrunner, Prof Lars Arge, Prof John Harer, and Prof Xiaobai Sun. Topological Analysis of Scalar Functions for scientific Data Visualization. PhD thesis, Duke University, 2004.

    Google Scholar 

  15. Ravi Samtaney, Deborah Silver, Norman Zabusky, and Jim Cao. Visualizing features and tracking their evolution. Computer, 27(7):20–27, 1994.

    Article  Google Scholar 

  16. Peter Schall, Itai Cohen, David A. Weitz, and Frans Spaepen. Visualization of Dislocation Dynamics in Colloidal Crystals. Science, 24:1944–1948, 2004.

    Article  Google Scholar 

  17. Peter Schall, Itai Cohen, David A. Weitz, and Frans Spaepen. Visualizing dislocation nucleation by indenting colloidal crystals. Nature, 440:319–323, 2006.

    Article  Google Scholar 

  18. James P. Sethna. Statistical Mechanics: Entropy, Order Parameters and Complexity. Oxford University Press: Oxford, New York, 2006.

    Google Scholar 

  19. Kenneth J. Supowit. The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees. J. ACM, 30(3):428–448, 1983.

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by Deutsche Forschungsgemeinschaft (DFG) as part of SFB 716. The work of J. Comba and C. Dietrich is supported by CNPq grant 485853/ 2007-0.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Grottel, S., Dietrich, C.A., Comba, J.L.D., Ertl, T. (2011). Topological Extraction and Tracking of Defects in Crystal Structures. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_14

Download citation

Publish with us

Policies and ethics