Geometric Topology & Visualizing 1-Manifolds

  • Kirk E. JordanEmail author
  • Lance E. Miller
  • Thomas J. Peters
  • Alexander C. Russell
Part of the Mathematics and Visualization book series (MATHVISUAL)


Ambient isotopic approximations are fundamental for correct representation of the embedding of geometric objects in R 3, with a detailed geometric construction given here. Using that geometry, an algorithm is presented for efficient update of these isotopic approximations for dynamic visualization with a molecular simulation.


Piecewise Linear Spline Curve Dynamic Visualization Parametric Curf Entire Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Amenta, T. J. Peters, and A. C. Russell. Computational topology: ambient isotopic approximation of 2-manifolds.Theoretical Computer Science, 305(1-3):3–15, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. H. Bing. The Geometric Topology of 3-Manifolds. American Mathematical Society, Providence, RI, 1983.zbMATHGoogle Scholar
  3. 3.
    Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. Isotopic implicit surface meshing. In László Babai, editor, STOC, pages 301–309. ACM, 2004.Google Scholar
  4. 4.
    Jason Cantarella, Michael Piatek, and Eric Rawdon. Visualizing the tightening of knots. In VIS ’05: Proceedings of the conference on Visualization ’05, pages 575–582, Washington, DC, USA, 2005. IEEE Computer Society.Google Scholar
  5. 5.
    Kenneth L. Clarkson. Building triangulations using ɛs-nets. In Jon M. Kleinberg, editor, STOC, pages 326–335. ACM, 2006.Google Scholar
  6. 6.
    David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent homology for kernels, images, and cokernels. In Claire Mathieu, editor, SODA, pages 1011–1020. SIAM, 2009.Google Scholar
  8. 8.
    Luiz Henrique de Figueiredo, Jorge Stolfi, and Luiz Velho. Approximating parametric curves with strip trees using affine arithmetic. Comput. Graph. Forum, 22(2):171–180, 2003.Google Scholar
  9. 9.
    T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In Advances in Discrete and Computational Geometry (Contemporary Mathematics 223, pages 109–143. American Mathematical Society, 1999.Google Scholar
  10. 10.
    Daniel Freedman. Combinatorial curve reconstruction in Hilbert spaces: A new sampling theory and an old result revisited. Comput. Geom., 23(2):227–241, 2002.Google Scholar
  11. 11.
    M. W. Hirsch. Differential Topology. Springer-Verlag, New York, 1976.zbMATHGoogle Scholar
  12. 12.
    K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Modeling time and topology for animation and visualization with examples on parametric geometry. Theoretical Computer Science, 405:41–49, 2008.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Maekawa and N. M. Patrikalakis. Shape Interrogation for Computer Aided Design and Manufacturing. Springer, New York, 2002.zbMATHGoogle Scholar
  14. 14.
    T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15(5):437–458, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Miller, E. L. F. Moore, T. J. Peters, and A. C. Russell. Topological neighborhoods for spline curves : Practice & theory. Lecture Notes in Computer Science: Real Number Algorithms, 5045:149 – 161, 2008.Google Scholar
  16. 16.
    E. L. F. Moore. Computational Topology of Spline Curves for Geometric and Molecular Approximations. PhD thesis, The University of Connecticut, 2006.Google Scholar
  17. 17.
    E. L. F. Moore, T. J. Peters, and J. A. Roulier. Preserving computational topology by subdivision of quadratic and cubic Bézier curves. Computing, 79(2):317–323, 2007.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Peters and X. Wu. On the optimality of piecewise linear max-norm enclosures based on slefes. In Proceedings of Curves and Surfaces, St Malo 2002. Vanderbilt Press, 2003.Google Scholar
  19. 19.
    L. Piegl and W. Tiller.TheNURBSBook, 2nd Edition.Springer, New York, NY, 1997.zbMATHGoogle Scholar
  20. 20.
    Carlo H. Séquin. CAD tools for aesthetic engineering. Computer-Aided Design, 37(7):737–750, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Kirk E. Jordan
    • 1
    Email author
  • Lance E. Miller
    • 2
  • Thomas J. Peters
    • 2
    • 3
  • Alexander C. Russell
    • 2
  1. 1.IBM CorporationCambridgeUSA
  2. 2.University of ConnecticutStorrsUSA
  3. 3.Kerner Graphics, Inc.San RafaelUSA

Personalised recommendations