Skip to main content

Pränatale Medizin – Entwicklung von der invasiven zur nichtinvasiven Diagnostik und von der Diagnose zur Therapie

  • Chapter
  • 1348 Accesses

Zusammenfassung

Pränatale Medizin statt nur Pränatale Diagnostik war schon 1987 der Titel des von uns herausgegebenen Buches Im Springer-Verlag, da sich bereits damals die wachsenden Möglichkeiten der vorgeburtlichen Therapie abzeichneten und auch aus ethischen Gründen eine reine Konzentration auf die Diagnostik oft unkorrigierbarer Anomalien nicht das eigentliche Ziel der Pränatalen Medizin ist. Kaum ein Gebiet der Medizin hat in den letzten Jahren eine raschere Entwickelung erlebt als dieses Gebiet, weil dabei Immer zwei große Fortschrittsbereiche zusammenkamen und noch heute kommen: die Genetik mit ihren raschen Entwicklungen im Labor einerseits und die Bildgebung mit ihren daraus resultierenden Möglichkeiten gezielter Eingriffe in utero andererseits.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   14.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Amicucci P, Gennarelli M, Novell! G et al. (2000) Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem Feb;46(2):301–2

    Google Scholar 

  • Anker P, Mulcahy H, Chen XQ et al. (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18(1 ):65–73

    Article  PubMed  CAS  Google Scholar 

  • Babochkina T, Mergenthaler S, De Napoli G et al. (2005) Numerous erythroblasts in maternal blood are impervious to fluorescent in situ hybridization analysis, a feature related to a dense compact nucleus with apoptotic character. Haematologica Jun;90(6):740–5

    Google Scholar 

  • Bianchi DW, Flint AF, Pizzimenti MF et al. (1990) Isolation of fötal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sei USA, May;87(9):3279–83

    Google Scholar 

  • Bianchi DW, Simpson JL, Jackson LG et al. (2002) Fötal gender and aneuploidy detection using fötal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fötal Cell Isolation Study Prenat Diagn, Jul;22(7):609–15

    Google Scholar 

  • Bitzer J, Tschudin S, Holzgreve W (2007) Kommunikative Fertigkeiten bei der pränatalen Beratung schwangerer Frauen. Praxis, 96, 629–636

    Article  PubMed  CAS  Google Scholar 

  • Brambati B, Oldrini A, Aladerum SA (1983) Methods of chorionic villi sampling in first trimester fetal diagnosis. In: Albertini A, Rosignani PG (ed) Progress in perinatal medicine Esperta Medica, 275, Amsterdam

    Google Scholar 

  • Bussel JB, Zabusky MR, Berkowitz RL et al. (1997) Fetal Alloimmune thrombocytopenia. New Engl J Med, 337, 22–6

    Article  PubMed  CAS  Google Scholar 

  • Canadian Collaborative CVS Amniocentesis Clinical Trial Group (1989) Multicentre randomised clinical trial of cho-rion villus sampling and amniocentesis. First report. Lancet, 1,1–6

    Google Scholar 

  • Chaudhuri JP, Zang KD (1976) Mitosis of maternal lymphocytes in the presence of fötal cells: possible implication in prenatal diagnosis from fötal blood samples. Hum Genet, Dec 15;34(3):307–10

    Google Scholar 

  • Chiu RW, Chan KC, Gao Y et al. (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sei USA, Dec 23; 105(51 ):20458–63

    Google Scholar 

  • Daffos F, Capella-Pavlovsky M, Forestier F (1983) Fetal blood sampling via the umbilical cord using a needle guided by ultrasound. Prenat Diagn, 3, 271–277

    Article  PubMed  CAS  Google Scholar 

  • Dargent D, Liaras J (1975) The fötal sex. Its prenatal diagnosis by the search of »fluorescent corpuscle« lymphocytes circulating in the maternal blood. Nouv Presse Med, Sep 27;4(31):2270

    Google Scholar 

  • Ekelund CK, Jorgensen FS, Petersen OB et al. (2008) Impact of a new national screening policy for Down's syndrome in Denmark: population based cohort study. BMJ, 337

    Google Scholar 

  • Fan HC, Blumenfeld YJ, Chitkara U et al. (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sei USA, Oct 21 ;105(42):16266–71

    Google Scholar 

  • Flake AW, Puck JM, Almieda-Porada G et al (1996) Successful in utero correction of X-Iinked recessive severe combined immuno-deficiency (X-SCID): fetal intraperitoneal transplantation of CD 34 enriched paternal bone marrow cells (EPPBMC). N Engl J Med, 335,1806–10

    Article  PubMed  CAS  Google Scholar 

  • Flake AW, Zanjani ED (1999) In utero hemopoietic stem cell transplantation: Ontogenic opportunities and biologic barriers. Blood, 94, 2179–91

    PubMed  CAS  Google Scholar 

  • Fayoux P, Hosana G, Devisme L et al. (2010) Neonatal tracheal changes following in utero fetoscopic balloon tra-cheal occlusion in severe congenital diaphragmatic hernia. J Pediatr Surg, 45,4, 687–92

    Article  PubMed  Google Scholar 

  • Ganshirt-Ahlert D, Burschyk M, Garritsen HS et al. (1992) Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am J Obstet Gynecol, May;166(5):1350–5

    Google Scholar 

  • Gasiorek-Wiens A, Tercanli S, Kozlowski P et al. (2009) German Speaking Down Syndrome Screening Group. Screening for trisomy 21 by fetal nuchal translucency and nasal bone length. 18,6, 645–648, xxxx.

    Google Scholar 

  • Gembruch U, Holzgreve W (2001) The fetus with nonimmune hydrops fetal is. In: Harrison MR, Evans MI, AdzickNS, Holzgreve W (ed) The unborn patient. The art and science of fetal therapy. 3rd edn. WB Saunders, Philadelphia, 525–582

    Google Scholar 

  • Golbus MS, Loughman WD, Epstein CJ et al. (1979) Prenatal genetic diagnosis in 3000 amniocenteses. N Engl J Med 300,157

    Article  PubMed  CAS  Google Scholar 

  • Hahn S, Huppertz B, Holzgreve W (2005) Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta, Aug;26(7):515–26

    Google Scholar 

  • Hahnemann H (1974) Early prenalal diagnosis. A study of biopsy techniques and cell culturing from extraembryo-nic membranes. Clin Genet 6, 294–306

    Article  PubMed  CAS  Google Scholar 

  • Hansmann M, Knoerr K(1978) Amniocentese in der Frühschwangerschaft-Technik, Probleme. In: Saling E, Dudenhausen J (Hrsg) Perinatale Medizin, Bd 7, 305, Thieme, Stuttgart New York

    Google Scholar 

  • Harrison MR, Evans M, Adzick S et al. (2001) The Unborn Patient. The Art and Science of Fetal Therapy. WB Saunders Co, Philadelphia, Third Edition

    Google Scholar 

  • Hartog M, Lapaire O, Holzgreve W (2010) Die Rolle der feto-matemale Transfusion für Präeklampsie. Gynäkol Prax 34, 283–90

    Google Scholar 

  • Holzgreve W, Hansmann M (1954) Erfahrungen mit der »Free Hand Needle«-Technik bei 3215 Amniozentesen im zweiten Trimenon zur pränatalen Diagnostik. Gynäkologe, 17, 77–82,1984.12. Westin, B: Lancet; 2, 872

    Google Scholar 

  • Holzgreve W, Golbus MS (1984) Prenatal Diagnosis of OrnithineTranscarbamylase Deficiency Utilizing Fetal Liver.Am J Hum Genet, 36, 320–328

    PubMed  CAS  Google Scholar 

  • Holzgreve W (1987) Pränatale Medizin. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Holzgreve W, Miny P (1990) Transabdominale und transzervikale Chorionbiopsien. Indikationen, Techniken und bisherige Ergebnisse. Gynäkologe, 23, 261–265

    PubMed  CAS  Google Scholar 

  • Holzgreve W, Miny P, Gerlach B et al. (1990) Benefits of placental biopsies for rapid karyotyping in the second and third trimester (late chorionic villus sampling) in high-risk pregnancies. Am J Obst Gynecol 162,1188–1192

    CAS  Google Scholar 

  • Holzgreve W, Miny P (1999) Genetic Aspects of Fetal Disease. Sem Perinatol, 13, 260–77

    Google Scholar 

  • Holzgreve W, Miny P, Evans I (1999) Genitourinary malformations. In: James DK, Steer PJ, Weiner CP et al. (ed) High Risk Pregnancy. Management options. 2nd edn. WB Saunders, Philadelphia, 427–442

    Google Scholar 

  • Holzgreve W, Li JJ, Steinborn A et al. (2001) Elevation in erythroblast count in maternal blood before the onset of preeclampsia. Am J Obstet Gynecol Jan;184(2):165–8

    Google Scholar 

  • Holzgreve W, Hahn S (2001) Prenatal Diangosis Using Fetal Cells and Free Fetal DNA in Maternal Blood. Clinics in Perinatology 28, 2, 353–65

    Article  PubMed  CAS  Google Scholar 

  • Holzgreve W, Miny P, Hahn S (2004) Individuelle Risikospezifizierung für Chromosomenanomalien in der Frühschwangerschaft. Die neuen gemeinsamen Empfehlungen für das Erstrimesterscreening. Gynäkologe 2,12–14

    Google Scholar 

  • Holzgreve W (2006) Ethik in der pränatalen Medizin – geht sie voran oder läuft sie hinterher? Therapeutische Umschau 63,681–2

    Article  Google Scholar 

  • Kohl T, Tchatcheva K, Weinbach J et al. (2010) Partial amniotic carbon dioxide insufflation (PACi) during minimally invasive fetoscopic surgery: early clinical experience in humans. Surg Endosc 24, 2,432–44

    Article  PubMed  Google Scholar 

  • Knoerr K, Jonatha W, Knoerr-Gaertner H (1973) Die genetische Risikoschwangerschaft. Geburtshilfe Frauenheilkd 33,617,82

    Google Scholar 

  • Li Y, Page-Christiaens GC, Gille JJ et al. (2007) Non-invasive prenatal detection of achondroplasia in size-fractionated cell-free DNA by MALDI-TOF MS assay. Prenat Diagn Jan;27(1):11–7

    Google Scholar 

  • Li Y, Finning K, Daniels G et al. (2008) Noninvasive genotyping fetal Kell blood group (KEL1) using cell-free fetal DNA in maternal plasma by MALDI-TOF mass spectrometry. Prenat Diagn Mar;28(3):203–8

    Google Scholar 

  • Li Y, Altarescu G, Renbaum P et al. (2009) Non-invasive prenatal diagnosis using cell-free fetal DNA in maternal plasma from PGD pregnancies. Reprod Biomed Online Nov;19(5):714–20

    Google Scholar 

  • Lo YM, Corbetta N, Chamberlain PF et al. (1997) Presence of fetal DNA in maternal plasma and serum. Lancet Aug 16;350(9076):485–7

    Google Scholar 

  • Lo YM, Lun FM, Chan KC et al. (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sei U S A Aug 7;104(32):13116–21

    Google Scholar 

  • Lo YM, Tsui NB, Chiu RW et al. (2007) Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. NatMed Feb;13(2):218–23

    Google Scholar 

  • Lo YM (2008) Fötal nucleic acids in maternal plasma. Ann N Y Acad Sei Aug;1137:140–3

    Google Scholar 

  • Lo YM, Chiu RW (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis. Clin Chem Mar;54(3):461–6

    Google Scholar 

  • Lun FM, Tsui NB, Chan KC et al. (2008) Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sei U S A Dec 16;105(50):19920–5

    Google Scholar 

  • Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguin chez I'homme. CR Acad Sei Paris (142):241–3

    CAS  Google Scholar 

  • Miltenyi S, Müller W, Weichel W et al. (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–8

    Article  PubMed  CAS  Google Scholar 

  • Moise KJR (2001) The fetus with immune hydrops. In: Harrison MR, Evans Ml, Adzick NS, Holzgreve W (ed)The unborn patient. The art and science of fetal therapy. 3rd edn. WB Saunders, Philadelphia, 513–523

    Google Scholar 

  • Mujezinovic F, Alfirevic Z (2007) Sampling of systematic review. Obstet Gynecol 110, 687–94

    Article  PubMed  Google Scholar 

  • Murken JD, Stengel-Rutkowski S (Hrsg) (1979) Pränatale Diagnostik. Enke, Stuttgart

    Google Scholar 

  • Nicolaides KH, Soothill PW, Rodeck CH et al. (1986) Rh disease: intravascular fetal blood transfusion by cordocentesis. Fetal Ther 1,185–92

    Article  PubMed  CAS  Google Scholar 

  • Paek B, Strauss A, Hasbargen i et al. (1999) Invasive fetale Therapie. Gynäkologe 32, 866–78

    Google Scholar 

  • Rauskolb R (1982) Die Punktion der Amnionhöhle. Diagnostik 15,176

    Google Scholar 

  • Rhoads GG, Jackson LG, Schlesselmann SE et al. (1989) The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med 320, 609–617

    Article  PubMed  CAS  Google Scholar 

  • Schoeberlein A, Schatt S, Troeger C et al. (2004) Engraftment kinetics of human cord blood and murine fetal liver stem cells following in utero transplantation into immunodefident mice. Stem Cells Dev 13, 6,677–84

    Article  PubMed  Google Scholar 

  • Schoeberlein A, Holzgreve W, Dudler L et al. (2005) Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol 192,4,1044–52

    Article  PubMed  CAS  Google Scholar 

  • Snijders RJM, Noble P, Sebire N et al. (1998) UK multicenter project on assessment of risk of trisomy 21 by maternal age and fetal nuchal translucency thickness at 10–14 weeks of gestation. Lancet 351,343–343

    Article  Google Scholar 

  • Sohn C, Holzgreve W (1995) Ultraschall in Gynäkologie und Geburtshilfe. Thieme, Stuttgart

    Google Scholar 

  • Steele MW, Breg WR (1966) Chromosome analysis of human amniotic fluid cells. Lancet 1, 383

    Article  PubMed  CAS  Google Scholar 

  • Stroun M, Anker P, Lyautey J et al. (1987) Isolation and characterization of DNA from the plasma of cancer patients.Eur J Cancer Clin Oncol Jun;23(6):707–12

    Google Scholar 

  • Tan EM, Schur PH, Carr RI et al. (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest Nov;45(11):1732–40

    Google Scholar 

  • Tang M, Lee M, Mohsenian F et al. (2009) Identification of RNA-SNP markers for noninvasive prenatal diagnosis (NIPD) of T18 and T13 American Journal of Obstetrics and Gynecology -The Pregnancy Meeting, Society for Maternal-Fetal Medicine: 2009 29th Annual Meeting 2008 December 2008, ;Volume 199, Issue 6, Supplement 1, (Society for Maternal-Fetal Medicine: 2009 29th Annual Meeting):Page S163

    Google Scholar 

  • Troeger C, Zhong XY, Burgemeister R et al. (1999) Approximately half of the erythroblasts in maternal blood are of fötal origin. Mol Hum Reprod Dec;5(12):1162–5

    Google Scholar 

  • Valenti C, Schutta EJ, Kehaty T (1968) Prenatal diagnosis of Down syndrome. Lancet 2, 220

    Article  PubMed  CAS  Google Scholar 

  • Verp MS, Gerbie AB (1981) Amniocentesis for prenatal diagnosis. Clin Obstet Gynecol 24,1007

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann B, Holzgreve W, Zhong XY et al. (2002) Inability to clonally expand fetal progenitors from maternal blood. Fetal DiagnTher Mar-Apr;17(2):97–100

    Google Scholar 

  • Zhong XY, Hahn S, Holzgreve W (2001) Prenatal identification of fetal genetic traits. Lancet Jan 27;357(9252):310–1

    Google Scholar 

  • Zhong XY, Holzgreve W, Hahn S (2001) Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma. Swiss Med Wkly Feb 10;131(5–6-):70–4

    Google Scholar 

  • Zhong XY, Holzgreve W, Hahn S (2001) Circulatory fetal and maternal DNA in pregnancies at risk and those affected by preeclampsia. Ann N Y Acad Sei Sep;945:138–40

    Google Scholar 

  • Zhong XY, Holzgreve W, Hoesli I et al. (2005) Circulatory corticotropin-releasing hormone mRNA concentrations are increased in women with preterm delivery but not in those who respond to tocolytic treatment. Clin ChemMar;51(3):635–6

    Google Scholar 

  • Zhong XY, Holzgreve W, Hahn S (2002) The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens Pregnancy 21 (1 ):77–83

    Article  PubMed  CAS  Google Scholar 

  • Zhong XY, Laivuori H, Livingston JC (2001) Elevation of both maternal and fetal extracellular circulating deoxyri-bonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol Feb;184(3):414–9

    Google Scholar 

  • Zhong XY, Holzgreve W, Hahn S (2006) Direct quantification of fetal cells in maternal blood by real-time PCR. Prenat Diagn Sep;26(9): 850–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holzgreve, W., Zhong, X.Y. (2011). Pränatale Medizin – Entwicklung von der invasiven zur nichtinvasiven Diagnostik und von der Diagnose zur Therapie. In: 125 Jahre Deutsche Gesellschaft für Gynäkologie und Geburtshilfe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15012-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15012-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15011-1

  • Online ISBN: 978-3-642-15012-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics