Kernel Fusion of Multiple Histogram Descriptors for Robust Face Recognition

  • Chi-Ho Chan
  • Josef Kittler
  • Muhammad Atif Tahir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


A multiple kernel fusion method combining two multiresolution histogram face descriptors is proposed to create a powerful representation method for face recognition. The multi resolution histogram descriptors are based on local binary patterns and local phase coding to achieve invariance to various types of image degradation. The multi-kernel fusion is based on the computationally efficient spectral regression KDA. The proposed face recognition method is evaluated on FRGC 2.0 database yielding very impressive results.


Local Binary Pattern Local Phase Quantization Kernel Fusion Linear Discriminant Analysis 


  1. 1.
    Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. PAMI 19(7), 775–779 (1997)Google Scholar
  2. 2.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. In: ICCV, pp. 786–791 (2005)Google Scholar
  3. 3.
    Turk, M.A., Pentland, A.: Face recognition using eigenfaces. In: CVPR, pp. 586–591 (1991)Google Scholar
  4. 4.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. PAMI 19(7), 711–720 (1997)Google Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: ICPR, pp. 1–4 (2008)Google Scholar
  7. 7.
    Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Transactions on Image Processing 16(1), 57–68 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chan, C., Kittler, J., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 809–818. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Chan, C., Kittler, J., Poh, N., Ahonen, T., Pietikäinen, M. (multiscale) local phase quantization histogram discriminant analysis with score normalisation for robust face recognition. In: VOEC, pp. 633–640 (2009)Google Scholar
  10. 10.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Singh, S., Gyaourova, A., Bebis, G., Pavlidis, I.: Infrared and visible image fusion for face recognition, vol. 5404, pp. 585–596. SPIE (2004)Google Scholar
  12. 12.
    de Diego, I.M., Serrano, Á., Conde, C., Cabello, E.: Face verification with a kernel fusion method. Pattern Recognition Letters (2010)Google Scholar
  13. 13.
    Liu, Z., Tao, Q.: Face recognition using new image representations. In: IEEE - INNS - ENNS International Joint Conference on Neural Networks, pp. 1871–1876 (2009)Google Scholar
  14. 14.
    Liu, Z., Liu, C.: A hybrid color and frequency features method for face recognition. IEEE Transactions on Image Processing 17(10), 1975–1980 (2008)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Liu, Z., Liu, C.: Robust face recognition using color information. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 122–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Hwang, W., Park, G., Lee, J., Kee, S.C.: Multiple face model of hybrid fourier feature for large face image set. In: CVPR, pp. 1574–1581 (2006)Google Scholar
  17. 17.
    Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. In: ICCV, October 2007, pp. 1–8 (2007)Google Scholar
  18. 18.
    Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 2(12), 2385–2404 (2000)CrossRefGoogle Scholar
  19. 19.
    Cai, D., He, X., Han, J.: Efficient kernel discriminat analysis via spectral regression. In: Proceedings of the International Conference on Data Mining (2007)Google Scholar
  20. 20.
    Stewart, G.W.: Matrix Algorithms Volume I: Basic Decomposition. SIAM, Philadelphia (1998)Google Scholar
  21. 21.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)CrossRefGoogle Scholar
  22. 22.
    Tan, X., Triggs, B.: Fusing gabor and lbp feature sets for kernel-based face recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 235–249. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Zhao, J., Wang, H., Ren, H., Kee, S.C.: Lbp discriminant analysis for face verification. In: CVPR, vol. 3, p.167 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chi-Ho Chan
    • 1
  • Josef Kittler
    • 1
  • Muhammad Atif Tahir
    • 1
  1. 1.Centre for Vision, Speech and Signal ProcessingUniversity of SurreyUnited Kingdom

Personalised recommendations