Combining Elimination Rules in Tree-Based Nearest Neighbor Search Algorithms

  • Eva Gómez-Ballester
  • Luisa Micó
  • Franck Thollard
  • Jose Oncina
  • Francisco Moreno-Seco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


A common activity in many pattern recognition tasks, image processing or clustering techniques involves searching a labeled data set looking for the nearest point to a given unlabelled sample. To reduce the computational overhead when the naive exhaustive search is applied, some fast nearest neighbor search (NNS) algorithms have appeared in the last years. Depending on the structure used to store the training set (usually a tree), different strategies to speed up the search have been defined. In this paper, a new algorithm based on the combination of different pruning rules is proposed. An experimental evaluation and comparison of its behavior with respect to other techniques has been performed, using both real and artificial data.


  1. 1.
    Böhm, C., Krebs, F.: High performance data mining using the nearest neighbor join. In: ICDM 2002: Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  2. 2.
    Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric spaces. In: SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp. 357–368. ACM, New York (1997)CrossRefGoogle Scholar
  3. 3.
    Brin, S.: Near neighbor search in large metric spaces. In: VLDB Conference, pp. 574–584 (1995)Google Scholar
  4. 4.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB Conference, pp. 426–435. Morgan Kaufmann Publishers, Inc., San Francisco (1997)Google Scholar
  5. 5.
    Dasarathy, B.V.: Data mining tasks and methods: Classification: nearest-neighbor approaches, pp. 288–298 (2002)Google Scholar
  6. 6.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)Google Scholar
  7. 7.
    Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Transactions on Computers, IEC 24, 750–753 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some improvements in tree based nearest neighbour search algorithms. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS (LNAI), vol. 2905, pp. 456–463. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Navarro, G.: Searching in metric spaces by spatial approximation. In: SPIRE 1999: Proceedings of the String Processing and Information Retrieval Symposium, p. 141. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  11. 11.
    Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous bisector* trees - a tool for efficient partitioning of complex scenes of geometric objects. In: Data Structures and Efficient Algorithms, Final Report on the DFG Special Joint Initiative, London, UK, pp. 186–203. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Oncina, J., Thollard, F., Gómez-Ballester, E., Micó, L., Moreno-Seco, F.: A tabular pruning rule in tree-based pruning rule fast nearest neighbour search algorithms. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 306–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision. MIT Press, Cambridge (2006)Google Scholar
  14. 14.
    Vidal, E.: New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (AESA). Pattern Recognition Letters 15, 1–7 (1994)CrossRefGoogle Scholar
  15. 15.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the Association for Computing Machinery 21(1), 168–173 (1974)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eva Gómez-Ballester
    • 1
  • Luisa Micó
    • 1
  • Franck Thollard
    • 2
  • Jose Oncina
    • 1
  • Francisco Moreno-Seco
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain
  2. 2.Grenoble University, LIG

Personalised recommendations