Advertisement

Abstract

Many computer vision and patter recognition problems are intimately related to the maximum clique problem. Due to the intractability of this problem, besides the development of heuristics, a research direction consists in trying to find good bounds on the clique number of graphs. This paper introduces a new spectral upper bound on the clique number of graphs, which is obtained by exploiting an invariance of a continuous characterization of the clique number of graphs introduced by Motzkin and Straus. Experimental results on random graphs show the superiority of our bounds over the standard literature.

Keywords

Adjacency Matrix Random Graph Spectral Radius Maximum Clique Graph Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barrow, H., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maximal cliques. Information Processing Letters 4(4), 83–84 (1976)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chin, R.T., Dyer, C.R.: Model-based recognition in robot vision. Comput. Surveys 18(1), 67–108 (1986)CrossRefGoogle Scholar
  3. 3.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Machine Intell. 21(11), 1105–1120 (1999)CrossRefGoogle Scholar
  4. 4.
    Suetens, P., Fua, P., Hanson, A.J.: Computational strategies for object recognition. Comput. Surveys 24(1), 5–61 (1992)CrossRefGoogle Scholar
  5. 5.
    Ambler, A.P., Barrow, H.G., Brown, C.M., Burstall, R.M., Popplestone, R.J.: A versatile computer-controlled assembly. In: Int. Joint Conf. on Artif. Intell., pp. 298–307 (1973)Google Scholar
  6. 6.
    Bolles, R.C., Cain, R.A.: Recognizing and locating partially visible objects: the local-feature-focus method. Int. J. Robotics Res. 1(n), 57–82 (1982)Google Scholar
  7. 7.
    Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Machine Intell. 11(11), 1168–1180 (1989)CrossRefGoogle Scholar
  8. 8.
    Ogawa, H.: Labeled point pattern matching by delaunay triangulation and maximal cliques. Pattern Recogn. 19(1), 35–40 (1986)CrossRefGoogle Scholar
  9. 9.
    Radig, B.: Image sequence analysis using relational structures. Pattern Recogn. 17(1), 161–167 (1984)CrossRefGoogle Scholar
  10. 10.
    Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17(4), 571–588 (1970)zbMATHCrossRefGoogle Scholar
  11. 11.
    Jain, A.K., Dubes, R.C.: Algorithms for data clustering. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  12. 12.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Machine Intell. 29(1), 167–172 (2007)CrossRefGoogle Scholar
  13. 13.
    Dmitry, D., Ari, R.: Efficient unsupervised discovery of word categories using symmetric patterns and high frequency words. In: 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the ACL, Association for Computational Linguistics, pp. 297–304 (2006)Google Scholar
  14. 14.
    Nina, M., Dana, R., Ram, S.: A new conceptual clustering framework. Machine Learning 56, 115–151 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hammersley, J., Clifford, P.: Markov fields on finite graphs and lattices (1971)Google Scholar
  16. 16.
    Hastad, J.: Clique is hard to approximate within n 1 − ε. In: Ann. Symp. Found. Comput. Sci., vol. 37, pp. 627–636 (1996)Google Scholar
  17. 17.
    Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Handbook of Combinatorial Optimization, vol. 1, pp. 1–74. Kluwer Academic Publishers, Boston (1999)Google Scholar
  18. 18.
    Budinich, M.: Exact bounds on the order of the maximum clique of a graph. Discr. Appl. Math. 127, 535–543 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540 (1965)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Computation 11(8), 1933–1955 (1999)CrossRefGoogle Scholar
  21. 21.
    Schellewald, C.: A bound for non-subgraph isomorphism. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 71–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Lu, M., Liu, H., Tian, F.: Laplacian spectral bounds for clique and independence numbers of graphs. J. Combin. Theory Series B 97(5), 726–732 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wilf, H.S.: The eigenvalues of a graph and its chromatic number. J. London Math. Soc. 42, 330–332 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Amin, A.T., Hakimi, S.L.: Upper bounds of the order of a clique of a graph. SIAM J. on Appl. Math. 22(4), 569–573 (1972)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Samuel Rota Bulò
    • 1
  • Marcello Pelillo
    • 1
  1. 1.Dipartimento di InformaticaUniversity of VeniceItaly

Personalised recommendations