Advertisement

Abstract

Most problems in pattern recognition can be posed in terms of using the dissimilarities between the set of objects of interest. A vector-space representation of the objects can be obtained by embedding them as points in Euclidean space. However many dissimilarities are non-Euclidean and cannot be represented accurately in Euclidean space. This can lead to a loss of information and poor performance. In this paper, we approach this problem by embedding the points in a non-Euclidean curved space, the hypersphere. This is a metric but non-Euclidean space which allows us to define a geometry and therefore construct geometric classifiers. We develop a optimisation-based procedure for embedding objects on hyperspherical manifolds from a given set of dissimilarities. We use the Lie group representation of the hypersphere and its associated Lie algebra to define the exponential map between the manifold and its local tangent space. We can then solve the optimisation problem locally in Euclidean space. This process is efficient enough to allow us to embed large datasets. We also define the nearest mean classifier on the manifold and give results for the embedding accuracy, the nearest mean classifier and the nearest-neighbor classifier on a variety of indefinite datasets.

Keywords

Euclidean Space Tangent Space Geodesic Distance Dynamic Time Warping Spherical Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  2. 2.
    Pekalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-euclidean or non-metric measures can be informative. In: SSPR/SPR, pp. 871–880 (2006)Google Scholar
  3. 3.
    Lindman, H., Caelli, T.: Constant curvature riemannian scaling. Journal of Mathematical Psychology 17, 89–109 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cox, T.F., Cox, M.A.A.: Multidimensional scaling on a sphere. Communications in Statistics - Theory and Methods 20(9), 2943–2953 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Shavitt, Y., Tankel, T.: Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Transactions on Networking 16, 25–36 (2008)CrossRefGoogle Scholar
  6. 6.
    Hubert, L., Arabie, P., Meulman, J.: Linear and circular unidimensional scaling for symmetric proximity matrices. British Journal of Mathematical & Statistical Psychology 50, 253–284 (1997)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Robles-Kelly, A., Hancock, E.R.: A riemannian approach to graph embedding. Pattern Recognition 40, 1042–1056 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Pekalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recognition. World Scientific, Singapore (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  10. 10.
    Xiao, B., Hancock, E.R.: Geometric characterisation of graphs. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 471–478. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 377–388 (1996)CrossRefGoogle Scholar
  12. 12.
    Lee, W.J., Duin, R.P.W.: An inexact graph comparison approach in joint eigenspace. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 35–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Scannell, J., Blakemore, C., Young, M.: Analysis of connectivity in the cat cerebral cortex. Journal of Neuroscience 15, 1463–1483 (1995)Google Scholar
  14. 14.
    Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign language recognition by combining statistical dtw and independent classfication. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2040–2046 (2008)CrossRefGoogle Scholar
  15. 15.
    Roth, V., Laub, J., Buhmann, J., Mueller, K.R.: Going metric: Denoising pairwise data. Advances in Neural Information Processing Systems, 841–856 (2003)Google Scholar
  16. 16.
    Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 286–299 (2007)CrossRefGoogle Scholar
  17. 17.
    Jain, A., Zongker, D.: Representation and recognition of handwritten digits using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 1386–1391 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Richard C. Wilson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations