Improvement of the Disc Harmonic Moments Descriptor by an Exponentially Decaying Distance Transform

  • Noureddine Ennahnahi
  • Mohammed Oumsis
  • Mohammed Meknassi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


The authors propose an improvement of a recent region-based shape descriptor inspired by the 3D spherical harmonics: the Disk Harmonic Moments Descriptor (DHMD). The binary image is weighted by an exponentially decaying distance transform (EDDT) before applying the disc harmonic transform (DHT) introduced recently as a good shape representation. The performance of the improved DHMD is compared to other recent methods from the same category. Set B of the MPEG-7 CE-1-Shape database is used for experimental validation. To benchmark the performance of the compared descriptors precision-recall pair is employed. The proposed approach seems be more efficient and effective if compared to its competitors.


Spherical harmonics Legendre polynomials Distance transform Salience Distance Transform region-based shape descriptor Content-based image retrieval 


  1. 1.
    Mokhtarian, F., Mackwoth, A.K.: A theory of multiscale curvature-based shape representation for planar curves. IEEE PAMI 14, 789–805 (1992)Google Scholar
  2. 2.
    Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: International Workshop on Image DataBases and Multimedia Search, Amsterdam, The Netherlands, pp. 35–42 (1996)Google Scholar
  3. 3.
    Kim, W.-Y., Kim, Y.-S.: A New Region-Based Shape descriptor. ISO/IEC MPEG99/M5472, Maui, Hawaii (1999)Google Scholar
  4. 4.
    Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Infor. Theory IT-8, 179–187 (1962)Google Scholar
  5. 5.
    The, C.-H., Chin, R.T.: On Image Analysis by the Methods of Moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4), 496–513 (1988)CrossRefGoogle Scholar
  6. 6.
    Teague, M.R.: Image analysis via the general theory of moments. Journal of Optical Society of America 70(8), 920–930 (1980)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chong, C.-W., Raveendran, P., Mukunda, R.: A comparative analysis of algorithms for fast computation of zernike moments. Pattern Recognition 3, 731–742 (2003)CrossRefGoogle Scholar
  8. 8.
    Haddadnia, J., Ahmadi, M., Faez, K.: An efficient feature extraction method with pseudo-zernike moment in rbf neural network-based human face recognition system. EURASIP Journal on Applied Signal Processing, 890–901 (2003)Google Scholar
  9. 9.
    Zhang, D.S., Lu, G.: Shape-based image retrieval using Generic Fourier Descriptor. Signal Processing: Image Communication 17, 825–848 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Zhang, D.S., Lu, G.: A comparative study of Fourier descriptors for shape representation and retrieval. In: Proc. Fifth Asian Conf. on Computer Vision (ACCV 2002), Melbourne, Australia, pp. 646–651 (2002)Google Scholar
  11. 11.
    Zhang, D.S., Lu, G.: Evaluation of MPEG-7 Shape descriptors Against Other Shape Descriptors. ACM Journal of Multimedia Systems 9(1), 15–30 (2003)CrossRefGoogle Scholar
  12. 12.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A Search Engine for 3D Models. ACM Transactions on Graphics 22(1), 83–105 (2003)CrossRefGoogle Scholar
  13. 13.
    Pu, J.T., Karthik, R.: On Visual Similarity based 2D Drawing Retrieval. Computer Aided Design 38(3), 249–259 (2006)CrossRefGoogle Scholar
  14. 14.
    Sajjanhart, A., Lu, G., Zhang, D., Hou, J., Chen, Y.-P.P.: Spherical Harmonics and Distance Transform for Image Representation and Retrieval. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 309–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Sajjanhart, A., Lu, G., Zhang, D.: Spherical Harmonics Descriptor for 2D-Image Retrieval. In: IEEE International Conference on Multimedia and Expo., ICME 2005, pp. 105–108 (2005)Google Scholar
  16. 16.
    Ennahnahi, N., Bouhouch, A., Oumsis, M., Meknassi, M.: A novel moments generation inspired by 3D spherical harmonics for robust 2D shape description. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 421–424 (2009)Google Scholar
  17. 17.
    Ennahnahi, N., Oumsis, M., Bouhouch, A., Meknassi, M.: Fast shape description based on a set of moments defined on the unit disc and inspired by three-dimensional spherical harmonics. Image Processing IET 4(2), 120–131 (2010)CrossRefGoogle Scholar
  18. 18.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3d Shape Descriptors. In: Symposium on Geometry Processing, (June 2003) pp. 167–175 (2003)Google Scholar
  19. 19.
    Fabbri, R., Costa, L., Da, F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms A comparative survey. ACM Computing surveys 2008 40(1), 1–44 (2008)CrossRefGoogle Scholar
  20. 20.
    Rosi, P.L., West, G.A.W.: Salience Distance transforms. Graphical Models Image Processing 57, 483–521 (1995)CrossRefGoogle Scholar
  21. 21.
    Latecki, L.J., Lakamper, R., Eckhardt, U.: Shape Descriptors for Non-rigid Shapes with a Single Closed Contour. In: IEEE Conf. On Computer Vision and Pattern Recognition (CVPR), pp. 424–429 (2000)Google Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Noureddine Ennahnahi
    • 1
  • Mohammed Oumsis
    • 1
  • Mohammed Meknassi
    • 1
  1. 1.LISQ Laboratory, Computer Science Department, Sciences faculty(Atlas) FezMorocco

Personalised recommendations