Advertisement

Abstract

A content-based tile retrieval system based on the underlying multispectral Markov random field representation is introduced. Single tiles are represented by our approved textural features derived from especially efficient Markovian statistics and supplemented with Local Binary Patterns (LBP) features representing occasional tile inhomogeneities. Markovian features are on top of that also invariant to illumination colour and robust to illumination direction variations, therefore an arbitrary illuminated tiles do not negatively influence the retrieval result. The presented computer-aided tile consulting system retrieves tiles from recent tile production digital catalogues, so that the retrieved tiles have as similar pattern and/or colours to a query tile as possible. The system is verified on a large commercial tile database in a psychovisual experiment.

Keywords

content based image retrieval textural features colour tile classification 

References

  1. 1.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant features. Pattern Recognition Letters 30, 306–313 (2009)CrossRefGoogle Scholar
  3. 3.
    Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Comput. Vision and Image Understanding 113(1), 48–62 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Wang, J.Z., Krovetz, R.: Clue: Cluster-based retrieval of images by unsupervised learning. IEEE Trans. Image Process. 14(8), 1187–1201 (2005)CrossRefGoogle Scholar
  5. 5.
    Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)Google Scholar
  6. 6.
    Li, W., Wang, C., Wang, Q., Chen, G.: A generic system for the classification of marble tiles using gabor filters. In: ISCIS 2008, pp. 1–6 (2008)Google Scholar
  7. 7.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)CrossRefGoogle Scholar
  8. 8.
    Ma, W.Y., Manjunath, B.S.: Texture features and learning similarity, pp. 425–430. IEEE, Los Alamitos (1996)Google Scholar
  9. 9.
    Monadjemi, A.: Towards efficient texture classification and abnormality detection. Ph.D. thesis, University of Bristol (2004)Google Scholar
  10. 10.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Santini, S., Jain, R.: Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 871–883 (1999)CrossRefGoogle Scholar
  12. 12.
    Shotton, J.D.J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vision 81(1), 2–23 (2009)CrossRefGoogle Scholar
  13. 13.
    Snoek, C.G.M., van de Sande, K.E.A., de Rooij, O., Huurnink, B., van Gemert, J., Uijlings, J.R.R., He, J., Li, X., Everts, I., Nedovic, V., van Liempt, M., van Balen, R., de Rijke, M., Geusebroek, J.M., Gevers, T., Worring, M., Smeulders, A.W.M., Koelma, D., Yan, F., Tahir, M.A., Mikolajczyk, K., Kittler, J.: The mediamill TRECVID 2008 semantic video search engine. In: Over, P., Awad, G., Rose, R.T., Fiscus, J.G., Kraaij, W., Smeaton, A.F. (eds.) TRECVID. National Institute of Standards and Technology, NIST (2008)Google Scholar
  14. 14.
    Stricker, M., Orengo, M.: Similarity of color images. In: Storage and retrieval for Image and Video Databases III, Ferbruary 1995. SPIE Proceeding Series, vol. 2420, pp. 381–392. SPIE, Bellingham (1995)Google Scholar
  15. 15.
    Vacha, P., Haindl, M.: Image retrieval measures based on illumination invariant textural MRF features. In: Sebe, N., Worring, M. (eds.) CIVR, pp. 448–454. ACM, New York (2007)Google Scholar
  16. 16.
    Vacha, P., Haindl, M.: Illumination invariants based on markov random fields. In: Proc. of the 19th International Conference on Pattern Recognition (2008)Google Scholar
  17. 17.
    Vacha, P., Haindl, M.: Natural material recognition with illumination invariant textural features. In: Proc. of the 20th International Conference on Pattern Recognition (2010) (accepted)Google Scholar
  18. 18.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1-2), 61–81 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pavel Vácha
    • 1
  • Michal Haindl
    • 1
  1. 1.Institute of Information Theory and Automation of the ASCRPragueCzech Republic

Personalised recommendations