Advertisement

Abstract

The study of some structural properties of networks is introduced from a graph spectral perspective. First, subgraph centrality of nodes is defined and used to classify essential proteins in a proteomic map. This index is then used to produce a method that allows the identification of superhomogeneous networks. At the same time this method classify non-homogeneous network into three universal classes of structure. We give examples of these classes from networks in different real-world scenarios. Finally, a communicability function is studied and showed as an alternative for defining communities in complex networks. Using this approach a community is unambiguously defined and an algorithm for its identification is proposed and exemplified in a real-world network.

Keywords

subgraph centrality Estrada index communicability network communities 

References

  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Newman, M.E.J.: Networks. An Introduction. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex Networks: Structure and Dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  8. 8.
    Barabási, A.-L., Albert, R.: Emergence of scaling in complex networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  10. 10.
    Farkas, I.J., Derényi, I., Barabási, A.-L., Vicsek, T.: Spectra of “Real–World” Graphs: Beyond the Semi-Circle Law. Phys. Rev. E 64, 26704 (2001)CrossRefGoogle Scholar
  11. 11.
    Goh, K.-I., Kahng, B., Kim, D.: Spectra and eigenvectors of scale-free networks. Phys. Rev. E64, 051903 (2001)Google Scholar
  12. 12.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F., Samukhin, A.N.: Spectra of complex networks. Phys. Rev. E 68, 46109 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    De Aguiar, M.A.M., Bar-Yam, Y.: Spectral analysis and the dynamic response of complex networks. Phys. Rev. E 71, 16106 (2005)CrossRefGoogle Scholar
  14. 14.
    Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71, 56103 (2005)CrossRefGoogle Scholar
  15. 15.
    Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhys. Lett. 73, 649–655 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Estrada, E.: Topological Structural Classes of Complex Networks. Phys. Rev. E 75, 016103 (2007)Google Scholar
  17. 17.
    Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E 77, 36111 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Estrada, E., Hatano, N.: Communicability Graph and Community Structures in Complex Networks. Appl. Math. Comput. 214, 500–511 (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  20. 20.
    Estrada, E., Rodríguez-Velázquez, J.A.: Spectral measures of bipartivity in complex networks. Physical Review E 72, 046105 (2005)Google Scholar
  21. 21.
    Deng, H., Radenković, S., Gutman, I.: The Estrada Index. In: Cvetković, D., Gutman, I. (eds.) Applications of Graph Spectra, pp. 123–140. Math. Inst., Belgrade (2009)Google Scholar
  22. 22.
    Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency matrices. Lin. Alg. Appl. 433, 637–652 (2010)Google Scholar
  23. 23.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the yeast protein-protein interaction network of budding yeast. Nucl. Ac. Res. 31, 2443–2450 (2003)CrossRefGoogle Scholar
  24. 24.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Field, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRefGoogle Scholar
  25. 25.
    Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRefGoogle Scholar
  26. 26.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43, 439–561 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Estrada, E.: Universality in Protein Residue Networks. Biophys. J. 98, 890–900 (2010)CrossRefGoogle Scholar
  28. 28.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Estrada, E., Higham, D.J., Hatano, N.: Communicability betweenness in complex networks. Physica A 388, 764–774 (2009)CrossRefGoogle Scholar
  30. 30.
    Estrada, E., Higham, D.J., Hatano, N.: Communicability and multipartite structure in complex networks at negative absolute temperatures. Phys. Rev. E 78, 026102 (2008)Google Scholar
  31. 31.
    Estrada, E.: Generalized walks-based centrality measures for complex biological networks. J. Theor. Biol. 263, 556–565 (2010)CrossRefGoogle Scholar
  32. 32.
    Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: A complex networks perspective. Int. J. Sol. Struct. 47, 624–639 (2010)zbMATHCrossRefGoogle Scholar
  33. 33.
    Crofts, J.J., Higham, D.J.: A weighted communicability measure applied to complex brain networks. J. Roy. Soc. Interface 33, 411–414 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ernesto Estrada
    • 1
  1. 1.Department of Mathematics and Statistics, Department of Physics and, Institute of Complex SystemsUniversity of StrathclydeGlasgowU.K.

Personalised recommendations