A Game-Theoretic Approach to the Enforcement of Global Consistency in Multi-view Feature Matching

  • Emanuele Rodolà
  • Andrea Albarelli
  • Andrea Torsello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


In this paper we introduce a robust matching technique that allows to operate a very accurate selection of corresponding feature points from multiple views. Robustness is achieved by enforcing global geometric consistency at an early stage of the matching process, without the need of ex-post verification through reprojection. Two forms of global consistency are proposed, but in both cases they are reduced to pairwise compatibilities making use of the size and orientation information provided by common feature descriptors. Then a game-theoretic approach is used to select a maximally consistent set of candidate matches, where highly compatible matches are enforced while incompatible correspondences are driven to extinction. The effectiveness of the approach in estimating camera parameters for bundle adjustment is assessed and compared with state-of-the-art techniques.


Nash Equilibrium Evolutionary Stable Strategy Bundle Adjustment Reprojection Error Interest Point Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albarelli, A., Bulò, S.R., Torsello, A., Pelillo, M.: Matching as a non-cooperative game. In: ICCV 2009 (2009)Google Scholar
  2. 2.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  3. 3.
    Tuytelaars, T., Bay, H., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)Google Scholar
  5. 5.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  6. 6.
    Marr, D., Hildreth, E.: Theory of Edge Detection. Royal Soc. of London Proc. Series B 207, 187–217 (1980)CrossRefGoogle Scholar
  7. 7.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004); British Machine Vision Computing (2002)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  10. 10.
    Saquib Sarfraz, M., Hellwich, O.: Head pose estimation in face recognition across pose scenarios. In: VISAPP (1), pp. 235–242 (2008)Google Scholar
  11. 11.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR 2006, pp. 519–528 (2006)Google Scholar
  12. 12.
    Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)Google Scholar
  13. 13.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  14. 14.
    Torsello, A., Bulò, S.R., Pelillo, M.: Grouping with asymmetric affinities: A game-theoretic perspective. In: CVPR 2006, pp. 292–299 (2006)Google Scholar
  15. 15.
    Zien, J.Y., Schlag, M.D.F., Chan, P.K.: Multi-level spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18, 1389–1399 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emanuele Rodolà
    • 1
  • Andrea Albarelli
    • 1
  • Andrea Torsello
    • 1
  1. 1.Dipartimento di InformaticaUniversità Ca’ FoscariVeniceItaly

Personalised recommendations