Advertisement

What Is the Complexity of a Network? The Heat Flow-Thermodynamic Depth Approach

  • Francisco Escolano
  • Miguel A. Lozano
  • Edwin R. Hancock
  • Daniela Giorgi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)

Abstract

In this paper we establish a formal link between network complexity in terms of Birkhoff-von Neumann decompositions and heat flow complexity (in terms of quantifying the heat flowing through the network at a given inverse temperature). We propose and proof characterization theorems and also two fluctuation laws for sets of networks. Such laws emerge from studying the implicacions of the Fluctuation Theorem in heat-flow characterization. Furthermore, we also define heat flow complexity in terms of thermodynamic depth, which results in a novel approach for characterizing networks and quantify their complexity In our experiments we characterize several protein-protein interaction (PPI) networks and then highlight their evolutive differences, in order to test the consistence of the proposed complexity measure in terms of the second law of thermodynamics.

Keywords

Inverse Temperature Permutation Matrice Bregman Divergence Spectral Graph Theory Depth Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Banerjee, A., Jost, J.: Graph Spectra as a Systematic Tool in Computational Biology. Discrete Applied Mathematics 157(10), 27–40 (2009)CrossRefMathSciNetGoogle Scholar
  2. [2]
    Estrada, E.: Spectral Scaling and Good Expansion Properties in Complex Networks. Europhys. Lett. 73(4), 649 (2006)CrossRefMathSciNetGoogle Scholar
  3. [3]
    Escolano, F., Hancock, E.R., Lozano, M.A.: Birkhoff Polytopes, Heat kernels and Graph complexity. In: Proc. of ICPR, pp. 1–5 (2008)Google Scholar
  4. [4]
    Escolano, F., Giorgi, D., Hancock, E.R., Lozano, M.A., Falcidieno, B.: Flow Complexity: Fast Polytopal Graph Complexity and 3D Object Clustering. In: Proc. of GbRPR, pp. 253–262 (2009)Google Scholar
  5. [5]
    Birkhoff, G.D.: Tres Observaciones sobre el Algebra Lineal. Universidad Nacional de Tucuman Revista, Serie A 5, 147–151 (1946)zbMATHMathSciNetGoogle Scholar
  6. [6]
    Agrawal, S., Wang, Z., Ye, Y.: Parimutuel Betting on Permuations. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 126–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. [7]
    Jerrum, M., Sinclair, A., Vigoda, E.: A Polynomial-time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries. Journal of the ACM 51(4), 671–697 (2004)CrossRefMathSciNetGoogle Scholar
  8. [8]
    Nock, R., Nielsen, F.: Fitting Smallest Enclosing Bregman Ball. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 649–656. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. [9]
    Tsang, I.W., Kocsor, A., Kwok, J.T.: Simple Core Vector Machines with Enclosing Balls. In: Proc. of ICLM, pp. 911–918 (2007)Google Scholar
  10. [10]
    Cayton, L.: Fast Nearest Neighbor Retrival with Bregman Divergences. In: Proc. of ICLM, pp. 112–119 (2008)Google Scholar
  11. [11]
    Slater, P.B.: Maximum-Entropy Representations in Convex Polytopes. Env. and Planning 21, 1541–1546 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francisco Escolano
    • 1
  • Miguel A. Lozano
    • 1
  • Edwin R. Hancock
    • 2
  • Daniela Giorgi
    • 3
  1. 1.University of Alicante 
  2. 2.University of York 
  3. 3.IMATI-CNRGenova

Personalised recommendations