A Causal Extraction Scheme in Top-Down Pyramids for Large Images Segmentation

  • Romain Goffe
  • Guillaume Damiand
  • Luc Brun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


Applicative fields based on the analysis of large images must deal with two important problems. First, the size in memory of such images usually forbids a global image analysis hereby inducing numerous problems for the design of a global image partition. Second, due to the high resolution of such images, global features only appear at low resolutions and a single resolution analysis may loose important information. The tiled top-down pyramidal model has been designed to solve this two major challenges. This model provides a hierarchical encoding of the image at single or multiple resolutions using a top-down construction scheme. Moreover, the use of tiles bounds the amount of memory required by the model while allowing global image analysis. The main limitation of this model is the splitting step used to build one additional partition from the above level. Indeed, this step requires to temporary refine the split region up to the pixel levelwhich entails high memory requirements and processing time. In this paper, we propose a new splitting step within the tiled top-down pyramidal framework which overcomes the previously mentioned limitations.


Irregular pyramid Topological model Tiled data structure Combinatorial map 


  1. 1.
    Bister, M., Cornelis, J., Rosenfeld, A.: Cornelis, and Azriel Rosenfeld. A critical view of pyramid segmentation algorithms. Pattern Recognition Letters 11(9), 605–617 (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Braquelaire, J.P., Domenger, J.P.: Representation of segmented images with discrete geometric maps. Image and Vision Computing 17(10), 715–735 (1999)CrossRefGoogle Scholar
  3. 3.
    Brun, L., Domenger, J.-P., Mokhtari, M.: Incremental modifications of segmented image defined by discrete maps. J. Visual Communication and Image Representation 14(3), 251–290 (2003)CrossRefGoogle Scholar
  4. 4.
    Brun, L., Kropatsch, W.G.: Combinatorial pyramids. In: ICIP (2), pp. 33–36 (2003)Google Scholar
  5. 5.
    Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93(2), 111–154 (2004)CrossRefGoogle Scholar
  6. 6.
    Goffe, R., Brun, L., Damiand, G.: A top down construction scheme for irregular pyramids. In: VISSAPP (1), pp. 163–170 (2009)Google Scholar
  7. 7.
    Goffe, R., Damiand, G., Brun, L.: Extraction of tiled top-down irregular pyramids from large images. In: 13th International Workshop on Combinatorial Image Analysis (IWCIA 2009), pp. 123–137. RPS, Singapore (2009)Google Scholar
  8. 8.
    Grasset-Simon, C., Damiand, G., Lienhardt, P.: n-d generalized map pyramids: Definition, representations and basic operations. Pattern Recognition 39(4), 527–538 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(3), 289–317 (2006)CrossRefGoogle Scholar
  10. 10.
    Jolion, J.-M., Montanvert, A.: The adaptative pyramid: A framework for 2d image analysis. CVGIP 55(3), 339–348 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. on PAMI 24(7), 881–892 (2002)Google Scholar
  12. 12.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. Journal of Applied Mathematics and Stochastic Analysis 3(1), 27–55 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 46(2), 141–161 (1989)CrossRefGoogle Scholar
  14. 14.
    Kropatsch, W.: Building irregular pyramids by dual graph contraction. IEE Proceedings - Vision, Image, and Signal Processing 142, 366–374 (1995)CrossRefGoogle Scholar
  15. 15.
    Lienhardt, P.: Subdivisions of n-dimensional spaces and n-dimensional generalized maps. In: Symposium on Computational Geometry, pp. 228–236 (1989)Google Scholar
  16. 16.
    Meer, P.: Stochastic image pyramids. Computer Vision, Graphics, and Image Processing 45(3), 269–294 (1989)CrossRefGoogle Scholar
  17. 17.
    Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 307–316 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Romain Goffe
    • 1
  • Guillaume Damiand
    • 2
  • Luc Brun
    • 3
  1. 1.SIC-XLIM, Université de Poitiers, CNRS, UMR6172Futuroscope ChasseneuilFrance
  2. 2.LIRIS, Université de Lyon, CNRS, UMR5205VilleurbanneFrance
  3. 3.GREYC, ENSICAEN, CNRS, UMR6072CaenFrance

Personalised recommendations