Attributed Graph Matching for Image-Features Association Using SIFT Descriptors

  • Gerard Sanromà
  • René Alquézar
  • Francesc Serratosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


Image-features matching based on SIFT descriptors is subject to the misplacement of certain matches due to the local nature of the SIFT representations. Some well-known outlier rejectors aim to remove those misplaced matches by imposing geometrical consistency. We present two graph matching approaches (one continuous and one discrete) aimed at the matching of SIFT features in a geometrically consistent way. The two main novelties are that, both local and contextual coherence are imposed during the optimization process and, a model of structural consistency is presented that accounts for the quality rather than the quantity of the surrounding matches. Experimental results show that our methods achieve good results under various types of noise.


attributed graph matching SIFT image registration discrete labeling softassign 


  1. 1.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  2. 2.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2) (January 2004)Google Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comunications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Aguilar, W., Frauel, Y., Escolano, F., Martinez-Perez, M.E.: A robust graph transformation matching for non-rigid registration. Image and Vision Computing 27, 897–910 (2009)CrossRefGoogle Scholar
  5. 5.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4) (April 1996)Google Scholar
  6. 6.
    Waltz, D.: Understanding line drawings of scenes with shadows. In: The Psychology of Computer Vision, McGraw-Hill, New York (1975)Google Scholar
  7. 7.
  8. 8.
    Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10) (October 2001)Google Scholar
  9. 9.
    Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labelling by relaxation operations. IEEE Transactions on Systems, Man and Cybernetics (6), 420–433 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerard Sanromà
    • 1
  • René Alquézar
    • 2
  • Francesc Serratosa
    • 1
  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Institut de Robtica i Informtica Industrial, CSIC-UPCBarcelonaSpain

Personalised recommendations