In order to use structural techniques from graph-based pattern recognition, a first necessary step consists in extracting a graph in an automatic way from an image. We propose to extract plane graphs, because of algorithmic properties these graphs have for isomorphism related problems. We also consider the problem of extracting semantically well-founded graphs as a compression issue: we get simple graphs from which can be rebuilt images similar to the initial image. The technique we introduce consists in segmenting the original image, extracting interest pixels on the segmented image, then converting these pixels into pointels, which in turn can be related by region-based triangulation. We show the feasibility and interest of this approach in a series of experiments.


Plane graphs images interest pointels segmentation Delaunay triangulation 


  1. 1.
    Bres, S., Jolion, J.-M.: Detection of interest points for image indexation. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 427–434. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Pattern Recogn. and Artificial Intell. 18(3), 265–298 (2004)CrossRefGoogle Scholar
  3. 3.
    Cori, R.: Un code pour les graphes planaires et ses applications. In: Astérisque, vol. 27, Soc. Math. de France, Paris, France (1975)Google Scholar
  4. 4.
    Damiand, G., de la Higuera, C., Janodet, J.-C., Samuel, E., Solnon, C.: A polynomial algorithm for subisomorphism of open plane graphs. In: MLG 2009 electronic proceedings (2009)Google Scholar
  5. 5.
    Damiand, G., de la Higuera, C., Janodet, J.-C., Samuel, E., Solnon, C.: A polynomial algorithm for submap isomorphism: Application to searching patterns in images. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 102–112. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Fàry, I.: On straight-line representation of planar graphs. Acta Scientiarum Mathematicarum 11, 229–233 (1948)Google Scholar
  7. 7.
    Finch, A.M., Wilson, R.C., Hancock, E.R.: Matching delaunay graphs. Pattern Recognition 30(1), 123–140 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  9. 9.
    Jiang, X., Bunke, H.: Optimal quadratic-time isomorphism of ordered graphs. Pattern Recognition 32(7), 1273–1283 (1999)CrossRefGoogle Scholar
  10. 10.
    Kandel, A., Bunke, H., Last, M. (eds.): Applied Graph Theory in Computer Vision and Pattern Recognition. Studies in Computational Intelligence, vol. 52. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  11. 11.
    Kropatsch, W., Macho, H.: Finding the structure of connected components using dual irregular pyramids. In: Proc. DGCI 1995, pp. 147–158 (1995)Google Scholar
  12. 12.
    Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23(1), 59–82 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Lozano, M.A., Escolano, F.: Protein classification by matching and clustering surface graphs. Pattern Recognition 39(4), 539–551 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int. Conf. Computer Vision, July 2001, vol. 2, pp. 416–423 (2001)
  16. 16.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  18. 18.
    Rosenfeld, A.: Adjacency in digital pictures. Infor. and Control 26(1), 24–33 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recognition Letters 24(8), 1067–1079 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Tutte, W.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Émilie Samuel
    • 1
  • Colin de la Higuera
    • 2
  • Jean-Christophe Janodet
    • 1
  1. 1.Université de Lyon, F-42023, Saint-Étienne, France, CNRS, UMR5516, Laboratoire Hubert Curien, 42023, Saint-Étienne, France, Université de Saint-Étienne, Jean MonnetSaint-ÉtienneFrance
  2. 2.CNRS, UMR6241, LINA, 44322, Nantes, France, Université de NantesNantesFrance

Personalised recommendations