Visual Alphabets on Different Levels of Abstraction for the Recognition of Deformable Objects

  • Martin Stommel
  • Klaus-Dieter Kuhnert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)

Abstract

Recognition systems for complex and deformable objects must handle a variety of possible object appearances. In this paper, a compositional approach to this problem is studied which splits the set of possible appearances into easier sub-problems. To this end, a grammar is introduced that represents objects by a hierarchy of increasingly abstract visual alphabets. These alphabets store features, complex patterns and different views of objects. The geometrical constraints are optimised to the respective level of abstraction. The performance of the method is demonstrated on a cartoon data base with high intra-class variance.

Keywords

Production Rule Geometrical Constraint Appearance Model Deformable Object False Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Behmo, R., Paragios, N., Prinet, V.: Graph Commute Times for Image Representation. In: IEEE Conference in Computer Vision and Pattern Recognition, CVPR 2008 (2008)Google Scholar
  2. 2.
    Crandall, D.J., Felzenszwalb, P.F., Huttenlocher, D.P.: Spatial Priors for Part- Based Recognition Using Statistical Models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–17 (2005)Google Scholar
  3. 3.
    Crandall, D.J., Huttenlocher, D.P.: Composite Models of Objects and Scenes for Category Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007)Google Scholar
  4. 4.
    Fergus, R., Perona, P., Zisserman, A.: A Sparse Object Category Model for Efficient Learning and Complete Recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 443–461. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Han, F., Zhu, S.C.: Bottom-up/Top-Down Image Parsing by Attribute Graph Grammar. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1778–1785 (2005)Google Scholar
  6. 6.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. Technical Report IRP-TR-03-15, School of Computer Science, Carnegie Mellon University (2004)Google Scholar
  7. 7.
    Lee, W.-J., Duin, R.: An Inexact Graph Comparison Approach in Joint Eigenspace. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 35–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lin, Z., Hua, G., Davis, L.: Multiple Instance Feature for Robust Part-based Object Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)Google Scholar
  9. 9.
    Liu, J., Yang, Y., Shah, M.: Learning Semantic Visual Vocabularies Using Diffusion Distance. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)Google Scholar
  10. 10.
    Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proc. of the International Conference on Computer Vision (ICCV), Kerkyra, Greece, September 1999, vol. 2, pp. 1150–1157 (1999)Google Scholar
  11. 11.
    Mikolajczyk, K., Leibe, B., Schiele, B.: Local Features for Object Class Recognition. In: International Conference on Computer Vision ICCV 2005 (October 2005)Google Scholar
  12. 12.
    Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple Object Class Detection with a Generative Model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2006, vol. 1, pp. 26–36 (2006)Google Scholar
  13. 13.
    Miyashita, Y., Sakai, K., Higuchi, S.-I., Masui, N.: Localization of Primal Long-Term Memory in the Primate Temporal Cortex. In: Squire, L.R., Weinberger, N.M., Lynch, G., McGaugh, J.L. (eds.) Memory: Organization And Locus of Change (1991)Google Scholar
  14. 14.
    Miyashita, Y.: Inferior Temporal Cortex: Where Visual Perception Meets Memory. Annual Reviews of Neuroscience 16, 245–265 (1993)CrossRefGoogle Scholar
  15. 15.
    Nielsen, K.J., Logothetis, N.K., Rainer, G.: Object features used by humans and monkeys to identify rotated shapes. Journal of Vision 8(2), 1–15 (2008)CrossRefGoogle Scholar
  16. 16.
    Salzmann, M., Urtasun, R., Fua, P.: Local Deformation Models for Monocular 3D Shape Recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar
  17. 17.
    Stark, M., Schiele, B.: How good are local features for classes of geometric objects. In: IEEE 11th International Conference on Computer Vision ICCV, pp. 1–8 (2007)Google Scholar
  18. 18.
    Stommel, M., Kuhnert, K.-D.: A Hierarchical Model for the Recognition of Deformable Objects. In: Int’l Conf. on Computer Vision and Graphics 2008 (ICCVG 2008), Warsaw, Poland, November 10–12 (2008)Google Scholar
  19. 19.
    Tanaka, K.: Inferotemporal cortex and object vision. Annual Reviews of Neuroscience 19, 109–139 (1996)CrossRefGoogle Scholar
  20. 20.
    Weber, M., Welling, M., Perona, P.: Unsupervised Learning of Models for Recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 628–641. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Yang, L., Jin, R., Sukthankar, R., Jurie, F.: Unifying Discriminative Visual Codebook Generation with Classifier Training for Object Category Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar
  22. 22.
    Zass, R., Shashua, A.: Probabilistic Graph and Hypergraph Matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Stommel
    • 1
  • Klaus-Dieter Kuhnert
    • 2
  1. 1.TZI Center for Computing and Communication TechnologiesUniversity BremenBremenGermany
  2. 2.Institute of Real-Time Learning SystemsUniversity of SiegenSiegenGermany

Personalised recommendations