Advertisement

Abstract

This paper focusses on the problem of locating object class exemplars from a large corpus of images using affinity propagation. We use attributed relational graphs to represent groups of local invariant features together with their spatial arrangement. Rather than mining exemplars from the entire graph corpus, we prefer to cluster object specific exemplars. Firstly, we obtain an object specific cluster of graphs using a similarity propagation based graph clustering (SPGC) method. Here a SOM neural net based tree clustering method is used to incrementally cluster a large corpus of local invariant descriptors. The popular affinity propagation based clustering algorithm is then individually applied to each object specific cluster. Using this clustering method, we obtain object specific exemplars together with a high precision for the data associated with each exemplar. The strategy adopted is one of divide and conquer, and this greatly increases the efficiency of mining exemplars. Using the exemplars, we perform recognition using a majority voting strategy that is weighted by nearest neighbor similarity. Experiments are performed on over 80K images spanning ~500 objects, and demonstrate the performance in terms of efficiency, scalability and recognition.

Keywords

Data Item Large Corpus Query Expansion Affinity Propagation Sift Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Frey, B., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315(5814), 972–976 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Xia, S.P., Liu, J.J., Yuan, Z.T., Yu, H., Zhang, L.F., Yu., W.X.: Cluster-Computer Based Incremental and Distributed RSOM Data-Clustering. ACTA Electronica sinica. 35(3), 385–391 (2007)Google Scholar
  3. 3.
    Xia, S.P., Hancock, E.R.: 3D Object Recognition Using Hyper-Graphs and Ranked Local Invariant Features. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 117–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Xia, S.P., Hancock, E.R.: Pairwise Similarity Propagation Based Graph Clustering for Scalable Object Indexing and Retrieval. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 184–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Xia, S.P., Ren, P., Hancock, E.R.: Ranking the Local Invariant Features for the Robust Visual Saliencies. In: ICPR (2008)Google Scholar
  6. 6.
    Xia, S.P., Hancock, E.R.: Learning Class Specific Hypergraphs. In: Foggia, P., Sansone, C., Vento, M. (eds.) Image Analysis and Processing – ICIAP 2009. LNCS, vol. 5716, pp. 269–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Xia, S.P., Hancock, E.R.: Graph-Based Object Class Discovery. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns. LNCS, vol. 5702, pp. 385–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant key points. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: ICCV (2007)Google Scholar
  11. 11.
    Chung, F.: Spectral graph theory. American Mathematical Society, Providence (1997)zbMATHGoogle Scholar
  12. 12.
    Everingham, M., Gool, L.V., Williams, C., Winn, J., Zisserman, A.: Overview and results of classification challenge. In: The PASCAL VOC 2007 Challenge Workshop, in conj. with ICCV (2007)Google Scholar
  13. 13.
    Li, F.F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. CVPR 2, 524–531 (2005)Google Scholar
  14. 14.
    Kadir, T., Brady, M., Zisserman, A.: An Invariant Method for Selecting Salient Regions in Images. In: Proc. Eighth ECCV., vol. 1(1), pp. 345–457 (2004)Google Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. PAMI 27(10), 1615–1639 (2005)Google Scholar
  16. 16.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zissermans, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)Google Scholar
  17. 17.
    Philbin, J., Sivic, J., Zisserman, A.: Geometric LDA: A Generative Model for Particular Object Discovery. BMVC (2008)Google Scholar
  18. 18.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints. IJCV 66(3), 231–259 (2006)CrossRefGoogle Scholar
  19. 19.
    Schonemann, P.H.: A generalized solution of the orthogonal Procrustes problem. Psychometrika 31(3), 1–10 (1966)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shengping Xia
    • 1
  • Rui Song
    • 1
  • Edwin R. Hancock
    • 2
  1. 1.ATR Lab, School of Electronic Science and EngineeringNational University of Defense TechnologyChangshaP.R. China
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations