Dissimilarity-Based Multiple Instance Learning

  • Lauge Sørensen
  • Marco Loog
  • David M. J. Tax
  • Wan-Jui Lee
  • Marleen de Bruijne
  • Robert P. W. Duin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6218)


In this paper, we propose to solve multiple instance learning problems using a dissimilarity representation of the objects. Once the dissimilarity space has been constructed, the problem is turned into a standard supervised learning problem that can be solved with a general purpose supervised classifier. This approach is less restrictive than kernel-based approaches and therefore allows for the usage of a wider range of proximity measures. Two conceptually different types of dissimilarity measures are considered: one based on point set distance measures and one based on the earth movers distance between distributions of within- and between set point distances, thereby taking relations within and between sets into account. Experiments on five publicly available data sets show competitive performance in terms of classification accuracy compared to previously published results.


dissimilarity representation multiple instance learning bag dissimilarity measure 


  1. 1.
    Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31–71 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS. The MIT Press, Cambridge (1997)Google Scholar
  3. 3.
    Cannon, A., Hush, D.: Multiple instance learning using simple classifiers. In: ICMLA, pp. 123–128 (2004)Google Scholar
  4. 4.
    Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS, pp. 561–568. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Sammut, C., Hoffmann, A.G. (eds.) ICML, pp. 179–186. Morgan Kaufmann, San Francisco (2002)Google Scholar
  6. 6.
    Tao, Q., Scott, S.D., Vinodchandran, N.V., Osugi, T.T., Mueller, B.: Kernels for generalized multiple-instance learning. IEEE Trans. Pattern Anal. Machine Intell. 30(12), 2084–2098 (2008)CrossRefGoogle Scholar
  7. 7.
    Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-i.i.d. samples. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM International Conference Proceeding Series, vol. 382, pp. 1249–1256. ACM, New York (2009)Google Scholar
  8. 8.
    Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Machine Intell. 28(12), 1931–1947 (2006)CrossRefGoogle Scholar
  9. 9.
    Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good classifiers. Pattern Recog. Lett. 23(8), 943–956 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach. In: Langley, P. (ed.) ICML, pp. 1119–1126. Morgan Kaufmann, San Francisco (2000)Google Scholar
  11. 11.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Asuncion, A., Newman, D.: UCI machine learning repository (2007)Google Scholar
  13. 13.
    Duin, R.P.W., Juszczak, P., Paclík, P., Pekalska, E., de Ridder, D., Tax, D.M.J.: PRTools, a Matlab toolbox for pattern recognition, version 4.0 (January 2004)Google Scholar
  14. 14.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001) Software available at,
  15. 15.
    Pekalska, E., Duin, R.P.W., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lauge Sørensen
    • 1
  • Marco Loog
    • 1
    • 2
  • David M. J. Tax
    • 2
  • Wan-Jui Lee
    • 2
  • Marleen de Bruijne
    • 1
    • 3
  • Robert P. W. Duin
    • 2
  1. 1.The Image Group, Department of Computer ScienceUniversity of CopenhagenDenmark
  2. 2.Pattern Recognition LaboratoryDelft University of TechnologyThe Netherlands
  3. 3.Departments of Radiology & Medical Informatics, Erasmus MCBiomedical Imaging Group RotterdamRotterdamThe Netherlands

Personalised recommendations