Skip to main content

Think Globally, Move Locally: Coarse Graining of Effective Free Energy Surfaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 75))

Abstract

We present a multi-scale simulation methodology, based on data-mining tools for the extraction of low-dimensional reduction coordinates, to explore dynamically a protein model on its underlying effective folding free energy landscape. In practice, the averaged coarse-grained description of the local protein dynamics is extracted in terms of a few reduction coordinates from multiple, relatively short molecular dynamics trajectories. By exploiting the information collected from the fast relaxation dynamics of the system, the reduction coordinates are extrapolated “backward-in-time” to map globally the underlying low-dimensional free energy landscape. We demonstrate that the proposed method correctly identifies the transition state region on the reconstructed two-dimensional free energy surface of a model protein folding transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amat, M. A., Kevrekidis, I. G., Maroudas, D.: Coarse molecular dynamics applied to the study of structural transitions in condensed matter. Phys. Rev. B 74 (2006) 132201

    Google Scholar 

  2. Bolhuis, P. G., Chandler, D., Dellago, C, Geisseler, P. L.: Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 53 (2002) 291–318

    Article  Google Scholar 

  3. Clementi, C., Plotkin, S. S.: The effects of nonnative interactions on protein folding rates: Theory and simulation. Protein Sci. 13 (2004) 1750–1766

    Article  Google Scholar 

  4. Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data. part i: Diffusion maps. Proc. Natl. Acad. Sci. USA 102 (2005) 7426–7431

    Google Scholar 

  5. Das, P., Matysiak, S., Clementi, C.: Balancing energy and entropy: A minimalist model for the characterization of protein folding landscapes. Proc. Natl. Acad. Sci. USA 102 (2005) 10141–10146

    Article  Google Scholar 

  6. Das, P., Moll, M., Stamati, H., Kavraki, L. E., Clementi, C.: Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc. Natl. Acad. Sci. USA 103 (2006) 9885–9890

    Article  Google Scholar 

  7. E. W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66 (2002) 052301

    Google Scholar 

  8. E. W., Ren, W., Vanden-Eijnden, E.: Finite temperature string method for the study of rare events. J. Phys. Chem. B 109 (2005) 6688–6693

    Google Scholar 

  9. Elber, R., Meller, J., Olender, R.: Stochastic path approach to compute atomically detailed trajectories: Application to the folding of c peptide. J. Phys. B 103 (1999) 899–911

    Google Scholar 

  10. Erban, R., Frewen, T. A., Wang, X., Elston, T., Coifman, R., Nadler, B., Kevrekidis, I. G.: Variable-free exploration of stochastic models: a gene regulatory network example. J. Chem. Phys. 126 (2007) 155103

    Article  Google Scholar 

  11. Ferrenberg, A. M., Swendsen, R.H.: Optimized monte carlo data analysis. Phys. Rev. Lett. 63 (1989) 1185–1198

    Google Scholar 

  12. Frewen, T. A., Kevrekidis, I. G., Hummer, G.: Exploration of effective potential landscapes using coarse reverse integration. J. Chem. Phys 131 (2009) 134104

    Google Scholar 

  13. Grantcharova, V. P., Baker, D.: Folding dynamics of the src sh3 domain. Biochemistry 36 (1997) 15685–15692

    Article  Google Scholar 

  14. Guckenheimer, J., Worfolk, P.: Bifurcations and Periodic Orbits of Vector Fields. Kluwer, Dordrecht (1993)

    Google Scholar 

  15. Henderson, M. E.: Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifurcat. Chaos 12 (2002) 451–476

    Article  MATH  Google Scholar 

  16. Henderson, M. E.: Computing invariant manifolds by integrating fat trajectories. SIAM J. Appl. Dyn. Syst. 4 (2005) 832–882

    Article  MATH  MathSciNet  Google Scholar 

  17. Hummer, G., Kevrekidis, I. G.: Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations. J. Chem. Phys. 118 (2003) 10762–10773

    Article  Google Scholar 

  18. Johnson, M. E., Jolly, M. S., Kevrekidis, I. G.: Two-dimensional invariant manifolds and global bifurcations: Some approximation and visualization studies. Num. Alg. 14 (1997) 125–140

    Article  MATH  MathSciNet  Google Scholar 

  19. Kabsch, W.: Discussion of solution for best rotation to relate 2 sets of vectors. Acta. Cryst. A34 (1978) 827–828

    Google Scholar 

  20. Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O., Theodoropoulos, C.: Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks. Comm. Math. Sci. 1 (2003) 715–762

    MATH  MathSciNet  Google Scholar 

  21. Kopelevich, D. I., Panagiotopoulos, Z. A., Kevrekidis, I. G.: Coarse-grained kinetic computations for rare events: Application to micelle formation. J. Chem. Phys. 122 (2005) 044908

    Article  Google Scholar 

  22. Laing, C. R., Frewen, T. A., Kevrekidis, I. G.: Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity 20 (2007) 2127–2146

    Article  MATH  MathSciNet  Google Scholar 

  23. Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99 (2002) 12562–12566

    Article  Google Scholar 

  24. Micheletti, C., Bussi, G., Laio, A.: Optimal langevin modeling of out-of-equilibrium molecular dynamics simulations. J. Chem. Phys. 129 (2008) 074105

    Article  Google Scholar 

  25. Mossa, A., Clementi, C.: Supersymmetric langevin equation to explore free energy landscapes. Phys. Rev. E 75 (2007) 046707

    Google Scholar 

  26. Nadler, B., Lafon, S., Coifman, R. R., Kevrekidis, I. G.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. Volume 18 of Advances in Neural Information Processing Systems, page 955 (2005). MIT, MA

    Google Scholar 

  27. Nadler, B., Lafon, S., Coifman, R. R., Kevrekidis, I. G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmon. A. 21 (2006) 113–127

    Article  MATH  MathSciNet  Google Scholar 

  28. Plaku, E., Stamati, H., Clementi, C., Kavraki, L. E.: Fast and reliable analysis of molecular motion using proximity and dimensionality reduction. Proteins Struct. Funct. Bioinformatics 67 (2007) 897–907

    Article  Google Scholar 

  29. Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, 2nd edition. Springer, Berlin (1996)

    Google Scholar 

  30. Sriraman, S., Kevrekidis, I. G., Hummer, G.: Coarse nonlinear dynamics and metastability of filling-emptying transitions: Water in carbon nanotubes. Phys. Rev. Lett. 95 (2005) 130603

    Article  Google Scholar 

  31. Tenenbaum, J. B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319–2323

    Article  Google Scholar 

  32. Wales, D. J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  33. Xu, W. , Harrison, S. C., Eck, M. J.: Three-dimensional structure of the tyrosine kinase c-Src. Nature 385 (1997) 595–602

    Article  Google Scholar 

  34. Voter, A. F.: Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 78 (1997) 3908–3911

    Article  Google Scholar 

Download references

Acknowledgements

The authors have planned and started their collaboration on this project during the program on “Bridging Time and Length Scales in Materials Science and Bio-Physics” that was held at the NSF-funded Institute for Pure and Applied Mathematics (IPAM) at UCLA in September-December 2005. This work has been supported in part by grants from NSF (C.C. Career CHE-0349303, CCF-0523908, and CNS-0454333), and the Robert A. Welch Foundation (C.C. Norman Hackermann Young Investigator award, and grant C-1570). The Rice Cray XD1 Cluster ADA used for the calculations is funded by NSF under grant CNS-0421109, and a partnership between Rice University, AMD and Cray. T.A.F and I.G.K are partially supported by NSF and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis G. Kevrekidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, P., Frewen, T.A., Kevrekidis, I.G., Clementi, C. (2011). Think Globally, Move Locally: Coarse Graining of Effective Free Energy Surfaces. In: Gorban, A., Roose, D. (eds) Coping with Complexity: Model Reduction and Data Analysis. Lecture Notes in Computational Science and Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14941-2_6

Download citation

Publish with us

Policies and ethics