Skip to main content

Scaling Invariant Interpolation for Singularly Perturbed Vector Fields (SPVF)

  • Conference paper
  • First Online:
Coping with Complexity: Model Reduction and Data Analysis

Abstract

The problem of modelling, numerical simulations and interpretation of the simulations results of complex systems arising in reacting flows requires more and more sophisticated methods of qualitative system analysis. Recently, the concept of invariant, slow/fast, attractive manifolds has proven to be an efficient tool for such an analysis. In particular, it allows us to study main properties of detailed models describing the reacting flow by considering appropriate low dimensional manifolds, which appear naturally in the system state/composition space as a manifestation of a restricted number of real degrees of freedom exhibited by the system.In order to answer the question of what are the minimal number of the real degrees of freedom (real system dimension) and to approximate low dimensional manifolds (i.e., reduced system’s phase spaces) the concept of Singularly Perturbed Vector Fields (SPVF) has been suggested lately [1]. In the current work a scales invariant version of the SPVF will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bykov, V., Goldfarb, I., Gol’dshtein, V.: Singularly perturbed vector fields. J. Phys. Conf. Ser. 55 (2006) 28–44

    Article  Google Scholar 

  2. Available at http://www.ca.sandia.gov/chemkin/

  3. Green, W.H., Barton, P.I., Bhattacharjee, B., Matheu, D.M., Schwer, D.A., Song, J., Sumathi, R., Carstensen, H.-H., Dean, A.M., Grenda, J.M.: Computer construction of detailed chemical kinetic models for gas-phase reactors. Ind. Eng. Chem. Res. 40(23) (2001) 5362–5370

    Article  Google Scholar 

  4. Miyoshi, KUCRS software library, version May 2005 beta, available from the author. See the web: http://www.frad.t.u-tokyo.ac.jp/~miyoshi/KUCRS/

  5. Griffiths, J.F.: Reduced kinetic models and their applications to practical combustion systems. Prog. Energ. Combust. Sci. 21 (1995) 25–107

    Article  Google Scholar 

  6. Chevalier, C., Pitz, W.J., Warnatz, J., Westbrook, C.K.: Hydrocarbon ignition: automatic generation of reaction mechanisms and applications to modelling of engine knock. Proc. Comb. Inst. 24 (1992) 93–101

    Google Scholar 

  7. Tomlin, A.S., Turanyi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Comprehensive Chemical Kinetics 35: Low-temperature Combustion and Autoignition, M.J. Pilling (eds.). Elsevier, Amsterdam (1997)

    Google Scholar 

  8. Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th edn. Springer, Berlin (2004)

    Google Scholar 

  9. Peters, N., Rogg, B.: Reduced kinetics mechanisms for application in combustion systems. Springer, Berlin (1993)

    Book  Google Scholar 

  10. Okino M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 98(2) (1998) 391–408

    Article  Google Scholar 

  11. Strygin, B.B., Sobolev, V.A.: Decomposition of Motions by the Integral Manifolds Method. Moscow, Nauka (1988) (in Russian)

    Google Scholar 

  12. Gorban, A.N., Karlin, I.V., Zinovyev, A.Yu.: Constructive methods of invariant manifolds for kinetic problems. Phys. Rep. 396(4–6) ( 2004) 197–403

    Article  MathSciNet  Google Scholar 

  13. Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58 (2003) 4751–4768

    Article  Google Scholar 

  14. Gorban, A.N., Karlin, I.V., Zinovyev, A.Yu.: Invariant grids for reaction kinetics. Physica A 333 (2004) 106–154

    Article  Google Scholar 

  15. Gorban, A.N., Karlin, I.V.: Constructive methods of invariant manifolds for physical and chemical kinetics. Lecture Notes in Physics 660, p. 498. Springer, Berlin (2005)

    Google Scholar 

  16. Gol’dshtein, V., Sobolev, V.: Qualitative analysis of singularly perturbed systems of chemical kinetics. In: Singularity theory and some problems of functional analysis. American Mathematical Society, Translations, S.G. Gindikin (ed.) 153(2) (1992) 73–92

    Google Scholar 

  17. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31 (1979) 53–98

    Article  MATH  MathSciNet  Google Scholar 

  18. Bykov, V., Gol’dshtein, V., Maas, U.: Simple global reduction technique based on decomposition approach. Combust. Theor. Model. 12(2) (2008) 389–405

    Article  MATH  MathSciNet  Google Scholar 

  19. Maas, U., Bykov, V., Rybakov, A., Stauch, R.: Hierarchical modelling of combustion processes. Proc. Teraflop WS (2009) 111–128

    Google Scholar 

  20. Hirschfelder, J., Curtiss, C.: Molecular theory of gases and liquids. Wiley, New York (1964)

    Google Scholar 

  21. Bird, R., Stewart, W., Lightfoot, E.: Transport phenomena. Wiley Interscience, New York (1960)

    Google Scholar 

  22. Ern, A., Giovangigli, V.: Multicomponent transport algorithms. Lecture Notes in Physics. Springer, Berlin (1994)

    MATH  Google Scholar 

  23. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion Manifolds. Proc. Comb. Inst. 31 (2007) 465–472

    Article  Google Scholar 

  24. Bykov, V., Maas, U.: Problem adapted reduced models based on reaction-diffusion nanifolds (REDIMs). Proc. Comb. Inst. 32(1) (2009) 561–568

    Article  Google Scholar 

  25. Singer, M.A., Pope S.B., Najm, H.N.: Operator-splitting with ISAT to model reacting flow with detailed chemistry. Combust. Theor. Model. 10(2) (2006) 199–217

    Article  MathSciNet  Google Scholar 

  26. Ren, Z., Pope, S.B., Vladimirsky A., Guckenheimer, J.M.: Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proc. Comb. Inst. 31 (2007) 473–481

    Article  Google Scholar 

  27. Maas, U.: Mathematische Modellierung instationaerer Verbrennungsprozesse unter Verwenung detaillieter Reaktionsmechanismen. PhD thesis, Naturwissenschaftlich-Mathematische Gesamtfakultaet. Ruprecht-Karls-Universitaet, Heidelberg (1988)

    Google Scholar 

  28. Rhodes, C., Morari, M., Wiggins, S.: Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos 9 (1999) 108–123

    Article  MATH  MathSciNet  Google Scholar 

  29. Kaper, H.G., Kaper, T.J.: Asymptotic analysis of two reduction methods for systems of chemical reactions. Argonne National Lab, preprint ANL/MCS-P912-1001 (2001)

    Google Scholar 

  30. Bykov, V., Goldfarb, I., Gol’dshtein, V., Maas, U.: On a modified version of ILDM approach: asymptotical analysis based on integral manifolds method. IMA J. Appl. Math. 71(3) (2006) 359–382

    Article  MATH  MathSciNet  Google Scholar 

  31. Maas U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239–264

    Article  Google Scholar 

  32. Maas, U.: Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput. Visual. Sci. 1 (1998) 69–82

    Article  MATH  Google Scholar 

  33. Maas U., Warnatz, J.: Ignition processes in hydrogen-oxygen mixtures. Combust. Flame 74 (1988) 53–69

    Article  Google Scholar 

  34. Maas, U.: Coupling of chemical reaction with flow and molecular transport. Appl. Math. 3 (1995) 249–266

    MathSciNet  Google Scholar 

  35. Bowen, J.R., Acrivos, A., Oppenheim, A.K.: Singular perturbation refinement to quasi-steady state approximation in chemical kinetics. Chem. Eng. Sci. 18 (1963) 177–188

    Article  Google Scholar 

  36. Bykov, V., Gol’dshtein, V.: On a decomposition of motions and model reduction. J. Phy. Conf. Ser. 138 (2008) 012003

    Article  Google Scholar 

  37. Bykov, V., Goldfarb, I., Gol’dshtein, V.: Novel numerical decomposition approaches for multiscale combustion and kinetic models. J. Phys. Conf. Ser. 22 (2005) 1–29

    Article  Google Scholar 

  38. Bodenstein, M., Lind, S.C.: Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen Elementen. Z. Phys. Chem. 27 (1906) 168–175

    Google Scholar 

  39. Williams, F.A.: Combustion theory, the fundamental theory of chemically reacting systems, 2nd edn. Benjamin/Cummings, California (1985)

    Google Scholar 

  40. Lam, S.H., Goussis, D.M.: The GSP method for simplifying kinetics. Int. J. Chem. Kinet. 26 (1994) 461–486

    Article  Google Scholar 

  41. Lam, S.H.: Reduced chemistry-diffusion coupling. Combust. Sci. Tech. 179 (2007) 767–786

    Google Scholar 

  42. Bykov, V., Maas, U.: Investigation of the hierarchical structure of kinetic models in ignition problems. Z. Phys. Chem. 223(4–5) (2009) 461–479

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG). Bykov thanks the Centre for Advanced Studies in Mathematics at the Ben-Gurion University of the Negev (BGU) for financial support of his stay at the BGU during spring 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viatcheslav Bykov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bykov, V., Gol’dshtein, V., Maas, U. (2011). Scaling Invariant Interpolation for Singularly Perturbed Vector Fields (SPVF). In: Gorban, A., Roose, D. (eds) Coping with Complexity: Model Reduction and Data Analysis. Lecture Notes in Computational Science and Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14941-2_5

Download citation

Publish with us

Policies and ethics