Skip to main content

Improving Polymer Solar Cell Through Efficient Solar Energy Harvesting

  • Chapter
  • First Online:
WOLEDs and Organic Photovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

  • 1399 Accesses

Abstract

In the last few years, several effective approaches have been developed to improve polymer solar cell performance. In this chapter, we summarized several of the efforts conducted in UCLA on polymer solar cells, of which each is associated to efficient light harvesting. We first discussed effective approaches to improve morphology and nanoscale structure control on the polymer active layer through (a) solvent annealing and (b) mixed solvent approaches, in order to enhance the crystallinity of polymer for enhancing absorption, charge transport, and efficiency in the RR-P3HT:PCBM system. Interface engineering work has led to the demonstration of novel inverted solar cell structure, which might have advantages over conventional device structure in solution electrode, transparent solar cell, and/or tandem structure. The third section is focused on the newly developed low bandgap polymers, which show 5.6% solar cell efficiency – a significant improvement over the model RR-P3HT:PCBM solar cell. The results are good representative of the recent progress in the field of organic solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crabtree GW, Lewis NS (2007) Physics Today 60:37

    Article  CAS  Google Scholar 

  2. Rühl C (2007) Statistical review of world energy. BP

    Google Scholar 

  3. US Department of Energy, Solar energy technologies program: solar America initiative, energy efficiency and renewable energy (EERP), Washington DC (2007)

    Google Scholar 

  4. Persson NK, Inganas O (2005) Simulations of optical processes in organic photovoltaic devices. In: Sun SS, Sariciftci NS (eds) Organic photovoltaics: mechanisms, materials, and devices. CRC, Boca Raton, FL

    Google Scholar 

  5. Peumans P, Yakimov A, Forrest SR (2004) J Appl Phys 95:2938

    Article  CAS  Google Scholar 

  6. Brabec CJ, Cravino A, Meissner D et al (2001) Adv Funct Mater 11:374

    Article  CAS  Google Scholar 

  7. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  CAS  Google Scholar 

  8. Li G, Shrotriya V, Huang J et al (2005) Nat Mater 4:864

    Article  Google Scholar 

  9. McCullough RD, Tristramnagle S, Williams SP et al (1003) J Am Chem Soc 115:4910

    Article  Google Scholar 

  10. Chen TA, Wu XM, Rieke RD (1995) J Am Chem Soc 117:233

    Article  CAS  Google Scholar 

  11. Sirringhaus H, Tessler N, Friend RH (1998) Science 280:1741

    Article  CAS  Google Scholar 

  12. Sirringhaus H, Brown PJ, Friend RH et al (1999) Nature 401:685

    Article  CAS  Google Scholar 

  13. Inganas O, Salaneck WR, Osterholm JE et al (1988) Synth Met 22:395

    Article  CAS  Google Scholar 

  14. Hotta S, Rughooputh S, Heeger AJ (1987) Synth Met 22:79

    Article  CAS  Google Scholar 

  15. Lim KC, Fincher CR, Heeger AJ (1983) Phys Rev Lett 50:1934

    Article  CAS  Google Scholar 

  16. Sundberg M, Inganas O, Stafstrom S et al (1989) Solid State Commun 71:435

    Article  CAS  Google Scholar 

  17. Korovyanko OJ, Osterbacka R, Jiang XM et al (2001) Phys Rev B 64:235122

    Article  Google Scholar 

  18. Cornil J, Beljonne D, Calbert JP et al (2001) Adv Mater 13:1053

    Article  CAS  Google Scholar 

  19. Sariciftci NS, Smilowitz L, Heeger AJ et al (1992) Science 258:1474

    Article  CAS  Google Scholar 

  20. Parker ID (1994) J Appl Phys 75:1656

    Article  CAS  Google Scholar 

  21. Veenstra SC, Heeres A, Hadziioannou G et al (2002) Appl Phys Mater Sci Process 75:661

    Article  CAS  Google Scholar 

  22. Li G, Shrotriya V, Yao Y et al (2005) J Appl Phys 98:043704

    Article  Google Scholar 

  23. Ma WL, Yang CY, Gong X et al (2005) Adv Funct Mater 15:1617

    Article  CAS  Google Scholar 

  24. Reyes-Reyes M, Kim K, Carroll DL (2005) Appl Phys Lett 87:083506

    Article  Google Scholar 

  25. Reyes-Reyes M, Kim K, Dewald J et al (2005) Org Lett 7:5749

    Article  CAS  Google Scholar 

  26. Kim Y, Cook S, Tuladhar SM et al (2006) Nat Mater 5:197

    Article  CAS  Google Scholar 

  27. Yang HC, Shin TJ, Yang L et al (2005) Adv Funct Mater 15:671

    Article  CAS  Google Scholar 

  28. Brinkmann M, Wittmann JC (2006) Adv Mater 18:860

    Article  CAS  Google Scholar 

  29. Shimomura T, Sato H, Furusawa H et al (1994) Phys Rev Lett 72:2073

    Article  CAS  Google Scholar 

  30. Kline RJ, McGehee MD, Kadnikova EN et al (2003) Adv Mater 15:1519

    Article  CAS  Google Scholar 

  31. Zhang R, Li B, Iovu MC et al (2006) J Am Chem Soc 128:3480

    Article  CAS  Google Scholar 

  32. Chang JF, Sun BQ, Breiby DW et al (2004) Chem Mater 16:4772

    Article  CAS  Google Scholar 

  33. Mihailetchi VD, Wildeman J, Blom PWM (2005) Phys Rev Lett 94:126602

    Article  CAS  Google Scholar 

  34. Mihailetchi VD, Koster LJA, Blom PWM et al (2005) Adv Funct Mater 15:795

    Article  CAS  Google Scholar 

  35. Yang H, LeFevre SW, Ryu CY et al (2007) Appl Phys Lett 90:172116

    Article  Google Scholar 

  36. Zhang FL, Jespersen KG, Bjorstrom C et al (2006) Adv Funct Mater 16:667

    Article  CAS  Google Scholar 

  37. Peet J, Soci C, Coffin RC et al (2006) Appl Phys Lett 89:212505

    Article  Google Scholar 

  38. Peet J, Kim JY, Coates NE et al (2007) Nat Mater 6:497

    Article  CAS  Google Scholar 

  39. Brown PJ, Thomas DS, Kohler A et al (2003) Phys Rev B 67:16

    Google Scholar 

  40. Erb T, Zhokhavets U, Gobsch G et al (2005) Adv Funct Mater 15:1193

    Article  CAS  Google Scholar 

  41. Yang X, Loos J (2007) Macromolecules 40:1353

    Article  CAS  Google Scholar 

  42. Yang X, Loos J, Veenstra SC et al (2005) Nano Lett 5:579

    Article  CAS  Google Scholar 

  43. Bjorstrom CM, Bernasik A, Rysz J et al (2005) J Phys Condens Matter 17:L529

    Article  Google Scholar 

  44. Jonsson SKM, Carlegrim E, Zhang F et al (2005) Jpn J Appl Phys 44:3695

    Article  Google Scholar 

  45. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45

    Article  CAS  Google Scholar 

  46. Wang WL, Wu HB, Yang CY et al (2007) Appl Phys Lett 90:183512

    Article  Google Scholar 

  47. Hadipour A, de Boer B, Blom PWM (2008) Adv Funct Mater 18:169

    Article  CAS  Google Scholar 

  48. Hadipour A, de Boer B, Wildeman J et al (2006) Adv Funct Mater 16:1897

    Article  CAS  Google Scholar 

  49. Dennler G, Prall HJ, Koeppe R et al (2006) Appl Phys Lett 89:073502

    Article  Google Scholar 

  50. Gilot J, Wienk MM, Janssen RAJ (2007) Appl Phys Lett 90:143512

    Article  Google Scholar 

  51. Kim JY, Lee K, Coates NE et al (2007) Science 317:222

    Article  CAS  Google Scholar 

  52. Shrotriya V, Wu EHE, Li G et al (2006) Appl Phys Lett 88:064104

    Article  Google Scholar 

  53. Brown TM, Friend RH, Millard IS et al (2001) Appl Phys Lett 79:174

    Article  CAS  Google Scholar 

  54. Brabec CJ, Shaheen SE, Winder C et al (2002) Appl Phys Lett 80:1288

    Article  CAS  Google Scholar 

  55. Hasegawa T, Miura S, Moriyama T et al (2004) SID Int Symp Dig Tech Pap 35:154

    Article  CAS  Google Scholar 

  56. Huang JS, Li G, Wu E et al (2006) Adv Mater 18:114

    Article  CAS  Google Scholar 

  57. Mihailetchi VD, Blom PWM, Hummelen JC et al (2003) J Appl Phys 94:6849

    Article  CAS  Google Scholar 

  58. Briere TR, Sommer AH (1977) J Appl Phys 48:3547

    Article  CAS  Google Scholar 

  59. Wang E, Wang L, Lan L et al (2008) Appl Phys Lett 92:033307

    Article  Google Scholar 

  60. Svensson M, Zhang FL, Veenstra SC et al (2003) Adv Mater 15:988

    Article  CAS  Google Scholar 

  61. Inganas O, Svensson M, Zhang F et al (2004) Appl Phys Mater Sci Process 79:31

    Article  Google Scholar 

  62. Chen MH, Hou J, Hong Z et al (2009) Adv Mater 21:4238

    Article  CAS  Google Scholar 

  63. Liao HH, Chen LM, Xu Z et al (2008) Appl Phys Lett 92:173303

    Article  Google Scholar 

  64. Winder C, Sariciftci NS (2004) J Mater Chem 14:1077

    Article  CAS  Google Scholar 

  65. Muhlbacher D, Scharber M, Morana M et al (2006) Adv Mater 18:2884

    Article  Google Scholar 

  66. Li G, Chu CW, Shrotriya V et al (2006) Appl Phys Lett 88:253503

    Article  Google Scholar 

  67. Scharber MC, Muhlbacher D, Koppe M et al (2006) Adv Mater 18:789

    Article  CAS  Google Scholar 

  68. Zhang F, Perzon E, Wang X et al (2005) Adv Funct Mater 15:745

    Article  CAS  Google Scholar 

  69. Zhu Z, Waller D, Gaudiana R et al (2007) Macromolecules 40:1981

    Article  CAS  Google Scholar 

  70. Dhanabalan A, van Duren JKJ, van Hal PA et al (2001) Adv Funct Mater 11:255

    Article  CAS  Google Scholar 

  71. Wang XJ, Perzon E, Oswald F et al (2005) Adv Funct Mater 15:1665

    Article  CAS  Google Scholar 

  72. Campos LM, Tontcheva A, Gunes S et al (2005) Chem Mater 17:4031

    Article  CAS  Google Scholar 

  73. Lee JK, Ma WL, Brabec CJ et al (2008) J Am Chem Soc 130:3619

    Article  CAS  Google Scholar 

  74. Zhou QM, Hou Q, Zheng LP et al (2004) Appl Phys Lett 84:1653

    Article  CAS  Google Scholar 

  75. Lu G, Usta H, Risko C et al (2008) J Am Chem Soc 130:7670

    Article  CAS  Google Scholar 

  76. Hou J, Chen HY, Zhang S et al (2008) J Am Chem Soc 130:16144

    Article  CAS  Google Scholar 

  77. Shrotriya V, Li G, Yao Y et al (2006) Adv Funct Mater 16:2016

    Article  CAS  Google Scholar 

  78. Sylvester-Hvid KO, Ziegler T, Riede MK et al (2007) J Appl Phys 102:054502

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support from the Office of Naval Research (Grant No. N00014-04-1-0434) and the Air Force Office of Scientific Research (FA9550-07-1-0264). Solarmer Energy Inc. provided part of the research funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Yang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, HY., Xu, Z., Li, G., Yang, Y. (2010). Improving Polymer Solar Cell Through Efficient Solar Energy Harvesting. In: Yam, V. (eds) WOLEDs and Organic Photovoltaics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14935-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14935-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14934-4

  • Online ISBN: 978-3-642-14935-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics