Skip to main content

Implications of Interfacial Electronics to Performance of Organic Photovoltaic Devices

  • Chapter
  • First Online:
  • 1367 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

It is widely known that electronic structures of metal/organic semiconductors and organic–organic interfaces have significant influences on performance of organic light-emitting devices. However, relatively little works have been done on their influences on organic photovoltaic devices. In this chapter, effects of deposition condition, deposition sequence, and substrate work function in controlling the energy level alignment between copper phthalocyanine and fullerene are introduced. In addition, effects of metal doping on the exciton blocker/cathode interface are summarized. Implications of these changes in interfacial electronic structures to the performance of OPV devices are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  2. Kim Y, Cook S, Tuladhar SM et al (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater 5:197–203

    Article  CAS  Google Scholar 

  3. Drechsel J, Männig B, Kozlowski F et al (2005) Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Appl Phys Lett 86:244102

    Article  Google Scholar 

  4. Shrotriya V, Wu EHE, Li G et al (2006) Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 88:064104

    Article  Google Scholar 

  5. Shao Y, Yang Y (2005) Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv Mater 17:2841

    Article  CAS  Google Scholar 

  6. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183

    Article  CAS  Google Scholar 

  7. Rand BP, Burk DP, Forrest SR (2007) Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev B 75:115327

    Article  Google Scholar 

  8. Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885

    Article  CAS  Google Scholar 

  9. Karg S, Riess W, Dyakonov V et al (1993) Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth Met 54:427

    Article  CAS  Google Scholar 

  10. Brabec CJ, Cravino A, Meissner D et al (2001) Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv Funct Mater 11:374

    Article  CAS  Google Scholar 

  11. Scharber MC, Mühlbacher D, Koppe M et al (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18:789

    Article  CAS  Google Scholar 

  12. Lee ST, Hou XY, Mason MG et al (1998) Energy level alignment at Alq/metal interfaces. Appl Phys Lett 72:1593

    Article  CAS  Google Scholar 

  13. Ishii H, Sugiyama K, Ito E et al (1999) Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv Mater 11:605

    Article  CAS  Google Scholar 

  14. Kahn A, Koch N, Gao W et al (2003) Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J Polym Sci B Polym Phys 41:2529

    Article  CAS  Google Scholar 

  15. Vázquez H, Gao W, Flores F et al (2005) Energy level alignment at organic heterojunctions: role of the charge neutrality level. Phys Rev B 71:041306

    Article  Google Scholar 

  16. Vázquez H, Flores F, Kahn A et al (2007) Induced Density of States model for weakly-interacting organic semiconductor interfaces. Org Electron 8:241

    Article  Google Scholar 

  17. Lau KM, Tang JX, Sun HY et al (2006) Interfacial electronic structure of copper phthalocyanine and copper hexadecafluorophthalocyanine studied by photoemission. Appl Phys Lett 88:173513

    Article  Google Scholar 

  18. Bhosle V, Prater JT, Yang F et al (2007) Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. J Appl Phys 102:023501

    Article  Google Scholar 

  19. Hong ZR, Liang CJ, Sun XY et al (2006) Characterization of organic photovoltaic devices with indium-tin-oxide anode treated by plasma in various gases. J Appl Phys 100:093711

    Article  Google Scholar 

  20. Tang JX, Lau KM, Lee CS et al (2006) Substrate effects on the electronic properties of an organic/organic heterojunctions. Appl Phys Lett 88:232103

    Article  Google Scholar 

  21. Tang JX, Lee CS, Lee ST (2007) Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning. J Appl Phys 101:064504

    Article  Google Scholar 

  22. Zhou YC, Liu ZT, Tang JX et al (2009) Substrate dependence of energy level alignment at the donor–acceptor interface in organic photovoltaic devices. J Electron Spectrosc Relat Phenom 174:35–39

    Article  CAS  Google Scholar 

  23. Rusu M, Strotmann J, Vogel M et al (2007) Effects of oxygen and illumination on the photovoltaic properties of organic solar cells based on phtalocyanine:fullerene bulk heterojunctions. Appl Phys Lett 90:153511

    Article  Google Scholar 

  24. Song QL, Wang ML, Obbard EG et al (2006) Degradation of small-molecule organic solar cells. Appl Phys Lett 89:251118

    Article  Google Scholar 

  25. Wu HR, Song QL, Wang ML et al (2007) Stable small-molecule organic solar cells with 1, 3, 5-tris(2-N-phenylbenzimidazolyl) benzene as an organic buffer. Thin Solid Films 515:8050

    Article  CAS  Google Scholar 

  26. Tanaka Y, Kanai K, Ouchi Y et al (2007) Oxygen effect on the interfacial electronic structure of C60 film studied by ultraviolet photoelectron spectroscopy. Chem Phys Lett 441:63

    Article  CAS  Google Scholar 

  27. Drechsel J, Männig B, Kozlowski F et al (2005) Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers. Appl Phys Lett 86:244102

    Article  Google Scholar 

  28. Shen L, Zhu G, Guo W et al (2008) Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer. Appl Phys Lett 92:073307

    Article  Google Scholar 

  29. Tang JX, Zhou YC, Liu ZT et al (2008) Interfacial electronic structures in an organic double-heterostructure photovoltaic cell. Appl Phys Lett 93:043512

    Article  Google Scholar 

  30. Hamed A, Sun YY, Tao YK et al (1993) Effects of oxygen and illumination on the in situ conductivity of C60 thin films. Phys Rev B 47:10873

    Article  CAS  Google Scholar 

  31. Ng TW, Lo MF, Zhou YC et al (2009) Ambient effects on fullerene/copper phthalocyanine photovoltaic interface. Appl Phys Lett 94:193304

    Article  Google Scholar 

  32. Crispin X, Geskin V, Crispin A et al (2002) Characterization of the interface dipole at organic/metal interfaces. J Am Chem Soc 124:8131

    Article  CAS  Google Scholar 

  33. Koch N, Kahn A, Ghijsen J et al (2003) Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70

    Article  CAS  Google Scholar 

  34. Li N, Lassiter BE, Lunt RR et al (2009) Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Appl Phys Lett 94:023307

    Article  Google Scholar 

  35. Ng TW, Lo MF, Liu ZT et al (2009) Substrate effects on the interface electronic properties of organic photovoltaic devices with an inverted C60/CuPc junction. J Appl Phys 106:114501

    Article  Google Scholar 

  36. Peumans P, Bulović V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650

    Article  CAS  Google Scholar 

  37. Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl Phys Lett 79:126

    Article  CAS  Google Scholar 

  38. Kim JY, Kim SH, Lee HH et al (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572

    Article  CAS  Google Scholar 

  39. Hänsel H, Zettl H, Krausch G et al (2003) Optical and electronic contribution in double-heterojunction organic thin-film solar cell. Adv Mater 15:2056

    Article  Google Scholar 

  40. Rand BP, Li J, Xue J et al (2005) Organic double-heterostructure photovoltaic cells employing thick Tris(acetylacetonato)ruthenium(III) exciton-blocking layers. Adv Mater 17:2714

    Article  CAS  Google Scholar 

  41. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693

    Article  CAS  Google Scholar 

  42. Kido J, Matsumoto T (1998) Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl Phys Lett 73:2866

    Article  CAS  Google Scholar 

  43. Chan MY, Lai SL, Fung MK et al (2003) Efficient CsF/Yb/Ag cathodes for organic light-emitting devices. Appl Phys Lett 82:1784

    Article  CAS  Google Scholar 

  44. Kwon S, Kim SC, Kim Y et al (2001) Photoemission spectroscopy study of Alq3 and metal mixed interfaces. Appl Phys Lett 79:4595

    Article  CAS  Google Scholar 

  45. Chan MY, Lai SL, Lau KM et al (2006) Doping-induced efficiency enhancement in organic photovoltaic devices. Appl Phys Lett 89:163515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lo, M.F. et al. (2010). Implications of Interfacial Electronics to Performance of Organic Photovoltaic Devices. In: Yam, V. (eds) WOLEDs and Organic Photovoltaics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14935-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14935-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14934-4

  • Online ISBN: 978-3-642-14935-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics