Skip to main content

Applications and Functionalities

  • Chapter
  • First Online:
  • 991 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Realization of future all-optical switching networks regardless of their exact operational specifications strongly depends on all-optical signal processing methods and elements. Advanced all-optical signal processing functions such as all-optical header recognition, buffer, switching, wavelength conversion, logic gates, flip-flop memory, etc. should be realized. In particular, wavelength conversion is very crucial in all of optical switching schemes including optical circuit switching, optical burst switching and optical packet switching. All-optical signal processing functions are usually performed using nonlinear optical effects that occur in a device under certain conditions. All-optical signal processing based on optical fibers profit several advantages such as easy coupling to the transmission link, low operation noise and ultrafast nonlinear phenomena (tens of femotoseconds) which make them attractive for high-speed all-optical signal processing beyond 1 Tb/s. However, these elements suffer from bulky nature of fiber-based devices which is demanded for observation of noticeable nonlinear effect and prevent the integration of the processing unit. Also, due to small nonlinear coefficient, the input optical power (usually more than 20 dBm) is too high for practical application in ultra-high bit rate all-optical signal processing systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramos, F., Kehayas, E., Martinez, J.M., Clavero, R., Herrera, J., Seoane, J., Nielsen, P.V., et al.: IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. IEEE J. Lightwave Technol. 23, 2993–3011 (2005)

    Article  Google Scholar 

  2. Schubert, C., Berger, J., Diez, S., Ehrke, H.J., Ludwig, R., Feiste, U., Schmidt, C., Weber, H.G., Toptchiyski, G., Randel, S., Petermann, K.: Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems. J. Lightwave Technol. 20, 618–624 (2002)

    Article  Google Scholar 

  3. Ishikawa, H. (ed.): Ultrafast All-Optical Signal Processing Devices. Wiley, New York (2008)

    Google Scholar 

  4. Nakamura, H., Sugimoto, Y., Kanamoto, K., Ikeda, N., Tanaka, Y., Nakamura, Y., Ohkouchi, S., Watanabe, Y., Inoue, K., Ishikawa, H., Asakawa, K.: Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004)

    Article  Google Scholar 

  5. Ellis, A.D., Kelly, A.E., Nesset, D., Pitcher, D., Moodie, D.G., Kashyap, R.: Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor optical amplifier. Electron. Lett. 34, 1958–1959 (1998)

    Article  Google Scholar 

  6. Perion, J.S., Wiesenfeld, J.M., Glance, B.: Fibre transmission of 10 Gbit/s sigals following wavelength conversion using a travelling-wave semiconductor optical amplifier. Electron. Lett. 30, 256–258 (1994)

    Article  Google Scholar 

  7. Durhuus, T., Mikkelsen, B., Joergensen, C., Danielsen, S.L., Stubkjaer, K.E.: All-optical wavelength conversion by semiconductor optical amplifiers. J. Lightwave Technol. 14, 942–954 (1996)

    Article  Google Scholar 

  8. Diez, S., Schmidt, C., Ludwig, R., Weber, H.G., Obermann, K., Kindt, S., Koltchanov, I., Petermann, K.: Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997)

    Google Scholar 

  9. Connelly, M.J.: Semiconductor Optical Amplifiers. Kluwer Academic Press, Boston (2002)

    Google Scholar 

  10. Lacey, J.P.R., Summerfield, M.A., Madden, S.J.: Tunability of polarisation-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers. J. Lightwave Technol. 16, 2419–2427 (1998)

    Article  Google Scholar 

  11. Liu, Y., Tangdiongga, E., Li, Z., de Waardt, H., Koonen, A.M.J., Khoe, G.D., Shu, X., Bennion, I., Dorren, H.J.S.: Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. IEEE J. Lightwave Technol. 25, 103–108 (2007)

    Article  Google Scholar 

  12. Girault, G., Clarke, A.M., Reid, D., Guignard, C., Bramerie, L., Anandarajah, P., Barry, L.P., Simon, J.-C, Harvey, J.: Analysis of bit rate dependence up to 80 Gbit/s of a simple wavelength converter based on XPM in a SOA and a shifted filtering. Opt. Commun. 281, 5731–5738 (2008)

    Article  Google Scholar 

  13. Clarke, A.: Optical pulse processing towards Tb/s high-speed photonic systems. PhD thesis, School of Electronic Engineering, Faculty of Engineering and Computing, Dublin City University (2007)

    Google Scholar 

  14. Nielsen, M.L.: Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filter. Electron. Lett. 39, 1334–1335 (2003)

    Article  Google Scholar 

  15. Poustie, A.J., Blow, K.J., Manning, R.J.: Storage threshold and amplitude restoration in an all-optical regenerative memory. Opt. Commun. 146, 262–267 (1998)

    Article  Google Scholar 

  16. DeVito, L.M.: Clock recovery and data retiming presentation by analog devices, advanced engineering course on IC design for optical communications systems, Part II. Lausanne, Switzerland (2001)

    Google Scholar 

  17. Bauer, S., Bornholdt, C., Brox, O., Hoffmann, D., Möhrle, M., Sahin, G., Sartorius, B., Schelhase, S., Lavigne, B., Chiaroni, D.: Ultrafast locking optical clock for IP packet switching applications. In: Tech. Dig. OFC 2000, paper TuF5 (2000)

    Google Scholar 

  18. Sugawara, M., Akiyama, T., et al.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)

    Article  Google Scholar 

  19. Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, F., Mao, M.-H., Bimberg, D.: Ultrafast gain dynamics in InAs–InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 12, 594–596 (2000)

    Article  Google Scholar 

  20. Spyropoulou, M., Sygletos, S., Tomkos, I.: Simulation of multiwavelength regeneration based on QD semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 19, 1577–1579 (2007)

    Article  Google Scholar 

  21. Wong, H.C., Ren, G.B., Rorison, J.M.: The constraints on quantum-dot semiconductor optical amplifiers for multichannel amplification. IEEE Photonics Technol. Lett. 18, 2075–2077 (2006)

    Article  Google Scholar 

  22. Webb, R.P., Manning, R.J., Maxwell, G.D., Poustie, A.J.: 40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer. Electron. Lett. 39, 79–81 (2003)

    Article  Google Scholar 

  23. Sun, H., Wang, Q., Dong, H., Chen, Z., Dutta, N.K., Jaques, J., Piccirilli, A.B.: All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron. 42, 747–751 (2006)

    Article  Google Scholar 

  24. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer. Opt. Express 13, 1892–1899 (2005)

    Article  Google Scholar 

  25. Fjelde, T.: Traffic analysis and signal processing in optical packet switched networks. PhD thesis, Research center COM, Technical University of Denmark, Kgs. Lyngby, Denmark (2001)

    Google Scholar 

  26. Dong, H.,Sun, H., Wang, Q., Dutta, N.K., Jaques, J.: 80 Gb/s all-optical logic and operation using Mach-Zehnder interferometer with differential scheme. Opt. Commun. 265, 79–83 (2006)

    Article  Google Scholar 

  27. Hamie, A., Sharaiha, A., Guegan, M.I.: Demondtration of an all-optical logic OR gate using gain saturation in an SOA. Microw. Opt. Technol. Lett. 39, 39–42 (2003)

    Article  Google Scholar 

  28. Dong, J., Zhang, X., Xu, J., Huang, D.: 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt. Commun. 281, 1710–1715 (2008)

    Article  Google Scholar 

  29. Hamié, A., Sharaiha, A., Guégan, M., Pucel, B.: All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 14, 1439–1441 (2002)

    Article  Google Scholar 

  30. Wolfson, D., Kloch, A., Fjelde, T., Janz, C., Dagens, B., Renaud, M.: 40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 12, 332–334 (2000)

    Article  Google Scholar 

  31. Ye, X., Ye, P., Zhang, M.: All-optical NAND gate using integrated SOA-based Mach-Zehnder interferometer. Opt. Fiber Technol. 12, 312–316 (2006)

    Article  Google Scholar 

  32. Fjelde, T., Kloch, A., Wolfson, D., Dagens, B., Brenot, R., Labrousse, A., Roux, E., Gaborit, F., Poingt, F., Renaud, M.: Simultaneous 2 × 10 to 20 Gbit/s time-division multiplexing and wavelength conversion using an integrated SOA-based Mach-Zehnder interferometer. In: Proceedings of OECC/IOOC2001, paper TueL.4, Sydney, Australia (2001)

    Google Scholar 

  33. Schubert, C., Schmidt, C., Ferber, S., Ludwig, R., Weber, H.: Error-free all-optical add-drop multiplexing at 160 Gb/s. Electron. Lett. 39, 1074–1076 (2003)

    Article  Google Scholar 

  34. Tangdiongga, E., Turkiewicz, J.P., Rohde, H., Schairer, W., Lehmann, G., Sikora, E.S.R., Zhou, Y.R., Lord, A., Payne, D., Khoe, G.D., de Waardt, H.: 160 Gb/s OTDM add/drop networking using 275 km installed fibres. Electron. Lett. 40, 552–554 (2004)

    Article  Google Scholar 

  35. de Melo, A.M., Randel, S., Petermann, K.: Mach-Zehnder interferometer-based high-speed OTDM add-drop multiplexing. IEEE J. Lightwave Technol. 25, 1017–1026 (2007)

    Article  Google Scholar 

  36. Tangdiongga, E., Liu, Y., de Waardt, H., Khoe, G., Dorren, H.J.S.: 320-to-40-Gb/s demultiplexing using a single SOA assisted by an optical filter. IEEE Photonics Technol. Lett. 18, 908–910 (2006)

    Article  Google Scholar 

  37. Tangdiongga, E., Liu, Y., de Waardt, H., Khoe, G.D., Koonen, A.M.J., Dorren, H.J.S., Shu, X., Bennion, I.: All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett. 32, 835–837 (2007)

    Article  Google Scholar 

  38. Yang, W., Zhang, M., Ye, P.: Analysis of 160 Gb/s all-optical NRZ-to-RZ data format conversion using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer. Opt. Commun. 282, 1744–1750 (2009)

    Article  Google Scholar 

  39. Dong, J., Zhang, X., Wang, F., Hong, W., Huang, D.: Experimental study of SOA-based NRZ-to-PRZ conversion and distortion elimination of amplified NRZ signal using spectral filtering. Opt. Commun. 281, 5618–5624 (2008)

    Article  Google Scholar 

  40. Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    Article  Google Scholar 

  41. Crottini, A., Salleras, F., Moreno, P., Dupertuis, M.A., Deveaud, B., Brenot, R.: Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme. Photonics Technol. Lett. 17, 977–979 (2005)

    Article  Google Scholar 

  42. Yuan, X., Guo, Z., Qiang, W., Yi, Y., Ping, X.: All-optical RZ to NRZ format conversion using single SOA assisted by optical band-pass filter. Chin. Phys. Lett. 25, 2051–2054 (2008)

    Article  Google Scholar 

  43. Hill, M.T., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: All-optical flip-flop based on coupled laser diodes. IEEE J. Quantum Electron. 37, 405–413 (2001)

    Article  Google Scholar 

  44. Takenaka, M., Nakano, Y.: Realization of all-optical flip-flop using directionally coupled bistable laser diode. IEEE Photonics Technol. Lett. 16, 45–47 (2004)

    Article  Google Scholar 

  45. Clavero, R., Ramos, F., Martinez, J.M., Marti, J.: All-optical flip-flop based on a single SOA-MZI. IEEE Photonics Technol. Lett. 17, 843–845 (2005)

    Article  Google Scholar 

  46. McDougall, R., Liu, Y., Maxwell, G., Hill, M.T., Harmon, R., Zhang, S., Rivers, L., Huijskens, F.M., Poustie, A., Dorren, H.J.S.: Hybrid integrated, all-optical flip-flop memory element for optical packet networks. In: Proceeding of ECOC, Cannes, France, Paper th.1.4.5. (2006)

    Google Scholar 

  47. Kehayas, E., Seoane, J., Liu, Y., Martinez, J.M., Herrera, J., Holm-Nielsen, P.V., Zhang, S., McDougall, R., Maxwell, G., Ramos, F., Marti, J., Dorren, H.J.S., Jeppesen, P., Avramopoulos, H.: All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks. IEEE Photonics Technol. Lett. 16, 1750–1752 (2006)

    Article  Google Scholar 

  48. Poustie, A.J., Blow, K.J., Manning, R.J., Kelly, A.E.: All-optical digital processing using semiconductor optical amplifiers. In: IEE Colloquium on New Developments in Optical Amplifiers, London, UK (1998)

    Google Scholar 

  49. Zoiros, K.E., Houbavlis, T., Kalyvas, M.: Ultra-high speed all-optical shift registers and their applications in OTDM networks. Opt. Quantum Electron. 36, 1005–1053 (2004)

    Article  Google Scholar 

  50. Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17, 18469–18477 (2009)

    Article  Google Scholar 

  51. Tangdiongga, E., Turkiewicz, J.P., Khoe, G.D., de Waardt, H.: Clock recovery by a fiber ring laser employing a linear optical amplifier. IEEE Photonics Technol. Lett. 16, 611–613 (2004)

    Article  Google Scholar 

  52. Slovak, J., Bornholdt, C., Sartorius, B.: All-optical 3R regenerator for asynchronous data packets at 40 Gb/s. In: Proceedings of European Conference on Optical Communication, pp. 388–389. Stockholm, Sweden (2004)

    Google Scholar 

  53. Phillips, I.D., Gloag, A., Moodie, D.G., Doran, N.J., Bennion, I., Ellis, A.D.: Drop and insert multiplexing with simultaneous clock recovery using an electroabsorption modulator. IEEE Photonics Technol. Lett. 10, 291–293 (1998)

    Article  Google Scholar 

  54. Kehayas, E., Stampoulidis, L., Avramopoulos, H., Liu, Y., Tangdiongga, E., Dorren, H.J.S.: 40 Gb/s all-optical packet clock recovery with ultrafast lock-in time and low inter-packet guardbands. Opt. Express 13, 475–480 (2005)

    Article  Google Scholar 

  55. Akiyama, T., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., Sugawara, M., Wada, O., Ishikawa, H.: Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron. 37, 1059–1065 (2001)

    Article  Google Scholar 

  56. Spyropoulou, M., Pleros, N., Papadimitriou, G., Tomkos, I.: A high-speed multiwavelength clock recovery scheme for optical packets. IEEE Photonics Technol. Lett. 20, 2147–2149 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Maram, R. (2011). Applications and Functionalities. In: Nanostructure Semiconductor Optical Amplifiers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14925-2_4

Download citation

Publish with us

Policies and ethics