Skip to main content

Quantum-Dot Semiconductor Optical Amplifiers, Basic Principles, Design Methods, and Optical Characterizations

  • Chapter
  • First Online:
Nanostructure Semiconductor Optical Amplifiers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1153 Accesses

Abstract

The development of semiconductor optical amplifiers (SOAs) happened soon after the invention of the semiconductor laser. A SOA is very similar to a semiconductor laser without (or with negligible) optical facet feedback. An incoming signal injected into the SOA propagates along its optical waveguide and is amplified by stimulated emission. The optical gain is achieved by inverting the carrier population in the active region via electrical pumping. During the 1990s due to the development of the erbium doped optical amplifier (EDFA) the popularity of the SOA as a linear amplifier declined as the EDFAs provided higher gain without the detrimental nonlinearities associated with an SOA.

During the development of SOAs, there were three main challenges related to SOAs performance making them acceptable for practical applications: polarisation sensitivity reduction, optical feedback reduction, and decreasing the noise level of SOAs. However, attentions turned to SOAs in the late 1990s as SOA design techniques developed, and thus its possibilities for integration and cost effectiveness led the SOA to become a competitive component in comparison to the EDFA. The design of SOAs developed in two directions: as a linear amplifier, it is needed to reduce optical nonlinearities of SOA and as a nonlinear medium; the nonlinear effects should be exploited for use in variety of applications such as all-optical signal processing. The advantages of SOAs are their versatility and possibility of monolithic integration with other optical components like passive waveguides and couplers to perform more complex functions. They are compact, electrically pumped and have a large optical bandwidth. Moreover, they allow a wide flexibility in the choice of the gain peak wavelength. In linear operation such as a power booster, as an inline amplifier and as a preamplifier EDFAs are the dominant amplifiers specially in long-haul systems as they have lower noise levels and much better crosstalk properties for multi-channel amplification in comparison to SOAs. However, the SOA offers a cost competitive alternative to the EDFA when used as an inline amplifier in metro networks, as a power booster and as a preamplifier. Also, in nonlinear operation they can perform all-optical signal processing due to their strong nonlinearities and their fast dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schubert, C., Ludwig, R., Weber, H.-G.: High-speed optical signal processing using semiconductor optical amplifiers. J. Opt. Fiber Commun. Rep. 2, 171–208 (2004)

    Article  Google Scholar 

  2. Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, F., Mao, H.M., Bimberg, D.: Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Sel. Topics Quantum Electron. 6, 544–551 (2000)

    Article  Google Scholar 

  3. Borri, P., Schneider, S., Langbein, W., Woggon, U., Zhukov, A.E., Ustinov, V.M., Ledentsov, N.N., Alferov, Z.I., Ouyang, D., Bimberg, D.: Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3 μm-wavelength at room temperature. Appl. Phys. Lett. 79, 2633–2635 (2001)

    Article  Google Scholar 

  4. Berg, T.W.: Quantum dot semiconductor optical amplifiers—Physics and application. In: Department of Communications, Optics & Materials (COM). 2004, Technical University of Denmark, Lyngby

    Google Scholar 

  5. Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45, 240–248 (2009)

    Article  Google Scholar 

  6. Mork, J., Nielsen, M.L., Berg, T.W.: The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photon. News 14, 42–48 (2003)

    Article  Google Scholar 

  7. Dommers, S., Temnov, V.V., Woggon, U., Gomis, J., Pastor, J.M., Laemmlin, M., Bimberg, D.: Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett. 90, 033508–033510 (2007)

    Article  Google Scholar 

  8. Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers. World Scientific, New Jersey (2006)

    Book  Google Scholar 

  9. Uskov, A., O’Reilly, E., Manning, R., Webb, R., Cotter, D., Laemmlin, M., Ledentsov, N., Bimberg, D.: On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers. IEEE Photon. Technol. Lett. 16, 1265–1267 (2004)

    Article  Google Scholar 

  10. Henry, C.: Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982)

    Article  Google Scholar 

  11. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R., Ouyang, D., Bimberg, D.: Linewidth enhancement factor in InGaAs quantum-dot amplifiers. IEEE J. Quantum Electron. 40, 1423–1429 (2004)

    Article  Google Scholar 

  12. Van der Poel, M., Gehrig, E., Hess, O., Birkedal, J., Hvam, D.: Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE J. Quantum Electron. 41, 1115–1123 (2005)

    Article  Google Scholar 

  13. Kim, J., Su, H., Minin, S., Chuang, S.L.: Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1022–1024 (2006)

    Article  Google Scholar 

  14. Berg, T.W., Mørk, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40, 1527–1539 (2004)

    Article  Google Scholar 

  15. Baney, D.M., Gallion, P., Tucker, R.S.: Theory and measurement techniques for the noise figure of optical amplifiers. Opt. Fiber Technol. 6, 122–154 (2000)

    Article  Google Scholar 

  16. Desurvire, E., Desthieux, B.: Fundamental limitations of EDFAs in amplified transmission systems. In: Proceedings of the OFC ‘99, Tutorial Session, Paper ThL, pp. 123–140 (1999)

    Google Scholar 

  17. Ebe, H., Uetake, A., Akiyama, T., Kawaguchi, K., Ekawa, M., Kuramata, A., Nakata, Y., Sugawara, M., Arakawa, Y.: Internal strain of self-assembled InxGa1-xAs quantum dots calculated to realize transverse-magnetic-mode-sensitive interband optical transition at wavelengths of 1.5 μm bands. Jpn. J. Appl. Phys. 44, 6312–6316 (2005)

    Article  Google Scholar 

  18. Saito, T., Nakaoka, T., Kakitsuka, T., Yoshikuni, Y., Arakawa, Y.: International Symposium on Quantum Dots and Photonic Crystals (QDPC2003), P-20 (2003)

    Google Scholar 

  19. Kawaguchi, K., Yasuoka, N., Ekawa, M., Ebe, H., Akiyama, T., Sugawara, M., Arakawa, Y.: Controlling polarization of 1.55 μm columnar InAs quantum dots with highly tensile-strained InGaAsP barriers on InP(001). Jpn. J. Appl. Phys. 45, L1244–L1246 (2006)

    Article  Google Scholar 

  20. Yasuoka, N., Kawaguchi, K., Ebe, H., Akiyama, T., Ekawa, M., Tanaka, S., Morito, K., Uetake, A., Sugawara, M., Arakawa, Y.: Demonstration of transverse-magnetic dominant gain in quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 92, 101108 (2008)

    Article  Google Scholar 

  21. Yasuoka, N., Kawaguchi, K., Ebe, H., Akiyama, T., Ekawa, M., Morito, K., Sugawara, M., Arakawa, Y.: 1.55 μm polarization-insensitive quantum dot semiconductor optical amplifier. ECOC 2008, vol. 4, pp. 17–18, Brussels, Belgium, 2008

    Google Scholar 

  22. Yasuoka, N., Kawaguchi, K., Ebe, H., Akiyama, T., Ekawa, M., Morito, K., Sugawara, M., Arakawa, Y.: Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5 μm wavelength bands. IEEE Photon. Technol. Lett. 20, 1908–1910 (2008)

    Article  Google Scholar 

  23. Sandall, I.C., Smowton, P.M., Thomson, J.D., Badcock, T., Mowbray, D.J., Liu, H.Y., Hopkinson, M.: Temperature dependence of threshold current in p-doped quantum dot lasers. Appl. Phys. Lett. 89, 15–17 (2006)

    Article  Google Scholar 

  24. Rossetti, M., Li, L., Fiore, A., Occhi, L., Velez, C., Mikhrin, S., Kovsh, A.: High-power quantum-dot superluminescent diodes with p-doped active region. IEEE Photon. Technol. Lett. 18, 1946–1948 (2006)

    Article  Google Scholar 

  25. Deppe, D.G., Freisem, S., Huang, H., Lipson, S.: Electron transport due to inhomogeneous broadening and its potential impact on modulation speed in p-doped quantum dot lasers. J. Phys. D 38, 2119–2125 (2005)

    Article  Google Scholar 

  26. Sandall, I.C., Smowton, P.M., Walker, C.L., Badcock, T., Mowbray, D.J., Liu, H.Y., Hopkinson, M.: The effect of p doping in InAs quantum dot lasers. Appl. Phys. Lett. 88, 111113-1-3 (2006)

    Article  Google Scholar 

  27. Fathpour, S., Mi, Z., Bhattacharya, P.: High-speed quantum dot lasers. J. Phys. D 38, 2103–2111 (2005)

    Article  Google Scholar 

  28. Gündogdu, K., Hall, KC., Boggess, T.F., Deppe, D.G., Shchekin, O.B.: Ultrafast electron capture into p-modulation-doped quantum dots. Appl. Phys. Lett. 85, 4570-1-3 (2004)

    Google Scholar 

  29. Sun, K.W., Kechiantz, A., Lee, B.C., Lee, C.P.: Ultrafast carrier capture and relaxation in modulation-doped InAs quantum dots. Appl. Phys. Lett. 88, 163117-1-3 (2006)

    Google Scholar 

  30. Bimberg, D., Meuer, C., Fiol, G., Schmeckebier, H., Arsenijevic, D., Eisenstein, G.: Influence of p-doping in quantum dot semiconductor optical amplifiers at 1.3 μm. ICTON (2009)

    Google Scholar 

  31. Cesari, V., Langbein, W., Borri, P., Rossetti, M., Fiore, A., Mikhrin, S., Krestikov, I., Kovsh, A.: Ultrafast carrier dynamics in p-doped InAs/GaAs quantum-dot amplifiers. IET Optoelectron. 1, 298–302 (2007)

    Article  Google Scholar 

  32. Cesari, V., Borri, P., Rossetti, M., Fiore, A., Langbein, W.: Refractive index dynamics and linewidth enhancement factor in p-doped InAs–GaAs quantum-dot amplifiers. IEEE J. Quantum Electron. 45, 579–585 (2009)

    Article  Google Scholar 

  33. Qasaimeh, O.: Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiers. J. Lightw. Technol. 27, 1978–1984 (2009)

    Article  Google Scholar 

  34. Asasa, M., Kameyama, A., Suematsu, Y.: Gain and intervalence band absorption in quantum-well lasers. IEEE J. Quantum Electron. 20, 745–753 (1984)

    Article  Google Scholar 

  35. Berg, T.W., Bischoff, S., Magnusdottir, I., Mørk, J.: Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon. Technol. Lett. 13, 541–543 (2001)

    Article  Google Scholar 

  36. Qasaimeh, O.: Ultra-fast gain recovery and compression due to Auger-assisted relaxation in quantum dot semiconductor optical amplifiers. J. Lightw. Technol. 27, 2530–2536 (2009)

    Article  Google Scholar 

  37. Qasaimeh, O.: Characteristics of cross-gain wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 16, 542–544 (2004)

    Article  Google Scholar 

  38. Ohnesorge, B., Albrecht, M., Oshinowo, J., Forchel, A., Arakawa, Y.: Rapid carrier relaxation in self-assembled InGaAs-GaAs quantum dots. Phys. Rev. B 54, 11532–11538 (1996)

    Article  Google Scholar 

  39. Morris, D., Perret, N., Fafard, S.: Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots. Appl. Phys. Lett. 75, 3593–3595 (1999)

    Article  Google Scholar 

  40. Giorgi, M.D., Lingk, C., Plessen, G.V., Feldmann, J., Rinaldis, S.D., Passaseo, A., Vittorio, M.D., Cingolani, R., Lomascolo, M.: Capture and thermal re-emission of carriers in long-wavelength InGaAs/GaAs quantum dots. Appl. Phys. Lett. 79, 3968–3970 (2001)

    Article  Google Scholar 

  41. Wu, Z., Choi, H., Su, X., Chakrabarti, S., Bhattacharya, P., Norris, T.B.: Ultrafast electronic dynamics in unipolar n-doped InGaAs–GaAs self-assembled quantum dots. IEEE J. Quantum Electron. 43, 486–496 (2007)

    Article  Google Scholar 

  42. Stranski, I.N., Krastanow, L.: Sitz. Ber., Oesterr. Akad. Wiss., Math.-Nat.wiss.Kl.II 146, 797 (1938)

    Google Scholar 

  43. Maximov, M.V., Tsatsul’nikov, B.V., Volovik, B.V., Sizov, D.S., Shernyakov, Y.M., Kaiander, I.N., et al.: Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors. Phys. Rev. B 62, 16671–16680 (2000)

    Article  Google Scholar 

  44. Costantini, G., Rastelli, A., Manzano, C., Songmuang, R., Schmidt, O.G., Kern, K., von Känel, H.: Universal shapes of self-organized semiconductor quantum dots: striking similarities between InAs/GaAs(001) and Ge/Si(001). Appl. Phys. Lett. 85, 5673–5675 (2004)

    Article  Google Scholar 

  45. Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin, S.S., Vasil’ev, A.P., Semenova, E.A., Shernyakov, Y.M., Maximov, M.V., Livshits, D.A., Ustinov, V.M., Ledentsov, N.N., Bimberg, D., Alferov, Z.I.: InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J. Cryst. Growth 251, 729–736 (2003)

    Article  Google Scholar 

  46. Laemmlin, M., Bimberg, D., Uskov, A.V., Kovsh, A.R., Ustinov, V.M.: Semiconductor optical amplifiers near 1.3 μm based on InGaAs/GaAs quantum dots. CThB6, 96, Conference on Lasers and Electro-Optics (CLEO). Optical Society of America, San Francisco, (2004)

    Google Scholar 

  47. O’Mahony, M.: Semiconductor laser optical amplifiers for use in future fiber systems. J. Lightw. Technol. 6, 531–544 (1988)

    Article  Google Scholar 

  48. Bernard, J., Renaud, M.: Semiconductor optical amplifiers. SPIE’s OE Mag. 1, 36–38 (2001)

    Google Scholar 

  49. Saitoh, T., Mukai, T., Mikame, O.: Theoretical analysis and fabrication of antireflection coatings on laser-diode facets. J. Lightw. Technol. 3, 288–293 (1985)

    Article  Google Scholar 

  50. Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press, Oxford (1993)

    Google Scholar 

  51. Olsson, N.A., Kazarinov, R.F., Nordland, W.A., Henry, C.H., Oberg, M.G., White, H.G., Garbinski, P.A., Savage, A.: Polarisation-independent optical amplifier with buried facets. Electron. Lett. 25, 1048–1049 (1989)

    Article  Google Scholar 

  52. Dutta, N.K., Lin, M.S., Piccirilli, A.B., Brown, R.L., Wynn, J., Coblentz, D., Twu, Y., Chakrabarti, U.K.: Fabrication and performance characteristics of buried-facet optical amplifiers. J. Appl. Phys. 67, 3943–3947 (1990)

    Article  Google Scholar 

  53. Cha, I., Kitamura, M., Honmou, H., Mito, I.: 1.5 μm band travelling-wave semiconductor optical amplifier with window facet structure. Electron. Lett. 25, 1241–1242 (1989)

    Article  Google Scholar 

  54. Zhou, E., Zhang, X., Huang, D.: Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model. Opt. Express 15, 9096–9106 (2007)

    Article  Google Scholar 

  55. Marcuse, D.: Reflection loss of laser mode from tilted end mirror. J. Lightw. Technol. 7, 336–339 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Maram, R. (2011). Quantum-Dot Semiconductor Optical Amplifiers, Basic Principles, Design Methods, and Optical Characterizations. In: Nanostructure Semiconductor Optical Amplifiers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14925-2_1

Download citation

Publish with us

Policies and ethics