Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.,volume 32))

  • 2098 Accesses

Abstract

In recent years, significant efforts have been made to manufacture thermoplastic composites using such natural fibers as wood sawdust, wheat straw, nut shell fiber, and jute fiber [13]. The rationable behind these efforts is that the use of natural fibers offers several benefits, including low cost, high specific properties, renewable nature, and biodegradability. Wood fibers are the most favored form of fibers in commercial usage. Because of their high specific stiffness and strength, Wood-fiber/Plastic Composites (WPCs) are a cost-effective alternative to many plastic composites or metals [4]. Wood fiber is a non-abrasive substance, which means that relatively large concentrations of this material can be incorporated into plastics without causing serious machine wear during blending and processing. In spite of their higher price, WPCs are becoming increasingly acceptable to consumers as a replacement for natural wood due to such advantages as durability, color permanence, resistance to degradation and fungal attacks, and reduced maintenance. Furthermore, adding wood fibers to plastic products makes good use of waste wood. WPCs are mainly employed in building products, such as decking, fencing, rails, door and window profiles, and decorative trims. Moreover, these composites are also gaining acceptance in automotive and other industrial applications [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaiz, A., Fernández, B., Cantero, G., Llano-Ponte, R., Valea, A., Mondragon, I.: Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Compos. Part A 36, 1637–1644 (2005)

    Article  Google Scholar 

  2. Cantero, G., Arbelaiz, A., Llano-Ponte, R., Mondragon, I.: Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos. Sci. Technol. 63, 1247–1254 (2003)

    Article  Google Scholar 

  3. Raj, R.G., Kokta, B.V., Groleau, G., Daneault, C.: Use of wood fiber as a filler in polyethylene: studies on mechanical properties. Plast. Rubber Process. Appl. 11(4), 215 (1989)

    Google Scholar 

  4. Bledzki, A.K., Faruk, O.V., Sperber, E.: Cars from bio-fibres. Macromol. Mater. Eng. 291, 449–457 (2006)

    Article  Google Scholar 

  5. Clemons, C.: Wood-plastic composites in the United States: the interfacing of two industries. For. Prod. J. 52(6), 10–18 (2002)

    MathSciNet  Google Scholar 

  6. Kokta, B.V., Maldas, D., Daneault, C., Beland, P.: Composites of polyvinyl chloride-wood fibers: I. Effect of isocyanate as a bonding agent. Polym. Plast. Technol. Eng. 29(1/2), 87–118 (1990)

    Google Scholar 

  7. Pickering, K.L., Abdalla, A., Ji, C., McDonald, A.G., Franich, R.A.: The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Part A. Appl. Sci. Manuf. 34(10), 915–926 (2003)

    Google Scholar 

  8. Kazayawoko, M., Balatinecz, J.J., Matuana, L.M.: Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J. Mater. Sci. 34, 6189–6199 (1999)

    Article  Google Scholar 

  9. Coutinho, F.M.B., Costa, T.H.S., Carvalho, D.L.: Polypropylene-wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65, 1227–1235 (1997)

    Article  Google Scholar 

  10. Raj, R.G., Kokta, B.V., Maldas, D., Daneault, C.: Use of wood fibers in thermoplastics. VII: The effect of coupling agents in polyethylene-wood fibers composites. J. Appl. Polym. Sci. 37, 1089–1103 (1989)

    Article  Google Scholar 

  11. Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18(4), 351–363 (1999)

    Article  Google Scholar 

  12. Pape, P.G., Romenesko, D.J.: The role of silicone powders in reducing the heat release rate and evolution of smoke in flame retardant thermoplastics. J. Vinyl Addit. Technol. 3, 225–232 (1997)

    Article  Google Scholar 

  13. Le Bras, M., Wilkie, C.A., Bourbigot, S., Duquesne S., Jama, C.: Fire Retardancy of Polymers: New Applications of Mineral Fillers, chap. 2. The Royal Society of Chemistry Publisher, UK (2005)

    Google Scholar 

  14. Wei, P., Hao, J., Du, J., Han, Z., Wang, J.: An investigation on synergism of an intumescent flame retardant based on silica and alumina. J. Fire Sci. 21, 17–28 (2003)

    Article  Google Scholar 

  15. Gilman, J.W., Kashiwagi, T., Harris, R.H., Jr., Lomakin, S., Lichetenhan, J.D., Jones, P., Bolf, A.: In: Al-Malaika, S., Wilkie, C., Golovoy, C.A. (eds.) Chemistry and Technology of Polymer Additives. Blackwell Science, London (1999)

    Google Scholar 

  16. Kashiwagi, T., Gilman, J.W., Butler, K.M., Harris, R.H., Shields, J.R., Asano, A.: Flame retardant mechanism of silica gel/silica. Fire Mater. 24, 277–289 (2000)

    Article  Google Scholar 

  17. Sain, M., Park, S.H., Suhara, F., Law, S.: Flame retardant and mechanical properties of natural fiber-PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 83(2), 363–367 (2004)

    Article  Google Scholar 

  18. Zhao, Y., Wang, K., Zhu, F., Xue, P., Jia, M.: Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym. Degrad. Stab. 91(2), 2874–2883 (2006)

    Article  Google Scholar 

  19. Li, B., He, J.: Investigation the mechanical property, flame retardancy and thermal degradation of LLDPE-wood fiber composites. Polym. Degrad. Stab. 83, 241–246 (2004)

    Article  Google Scholar 

  20. Klempner, D., Frisch, K.C.: Handbook of Polymeric Foams and Foam Technology. Oxford University, New York (1991)

    Google Scholar 

  21. Landrock, A.H.: Handbook of Plastic Foams: Types, Properties, Manufacture and Applications. Noyes, NJ (1991)

    Google Scholar 

  22. Lee, S.T.: Foam Extrusion: Principles and Practice. CRC Press, London (2000)

    Book  Google Scholar 

  23. Baker, R.W.: Membrane Technology and Application. McGraw Hill, New York (2000)

    Google Scholar 

  24. Hedrick, J.L., Carter, K.R., Labadie, J.W.: Nanoporous polyimides. Adv. Polym. Sci. 141, 1–8 (1999)

    Article  Google Scholar 

  25. Luebke, G., Holzberg, T.: New developments of chemical foaming agents for wood plastic composites. In: Fourth International Wood and Natural Fibre Composites Symposium, Kassel, Germany, p. 15-1 (2002)

    Google Scholar 

  26. Frich, K.C., Saunders, J. H.: Plastic Foams, Part I. Marcel Dekker Inc., New York (1972)

    Google Scholar 

  27. Gorski, R.A., Ramsey, R.B., Dishart, K.T.: Physical properties of blowing agent polymer systems-I: solubility of fluorocarbon blowing agents in thermoplastic resins. J. Cell. Plast. 22, 21–52 (1986)

    Article  Google Scholar 

  28. Dwyer, F.J., Zwolinski, L.M., Thrun, K.M.: Extruding thermoplastic foams with a non-CFC blowing agent. Plast. Eng. 5, 29–32 (1990)

    Google Scholar 

  29. Mccallum, T.J.: Properties and foaming behaviour of thermoplastic olefin blends based on linear and branched polypropylene. PhD Dissertation, Queen’s University, p. 21 (2007)

    Google Scholar 

  30. Shutov, F.A.: Integral/structureal polymer foams. Springer, New York (1986)

    Google Scholar 

  31. Botillier, P.E.: Br Patent 1184688 (1969)

    Google Scholar 

  32. Martini, J., Waldrnan, F.A., Suh, N.P.: The production and analysis of microcellular thermoplastic foams. SPE ANTEC Technical Papers, vol. 28, p. 674 (1982)

    Google Scholar 

  33. Doroudiani, S., Park, C.B., Kortschot, M.T.: Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends. Polym. Eng. Sci. 38(7), 1205–1215 (1998)

    Article  Google Scholar 

  34. Kumar, V., Weller, J.E.: A process to produce microcellular PVC. Int. Polym. Process. VIII(1),73–80 (1993)

    Google Scholar 

  35. Kumar, V., Weller, J.: Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. J. Eng. Ind. 116, 413–420 (1994)

    Article  Google Scholar 

  36. Kumar, V., Schirmer, H.G.: Semi-continuous production of solid state polymeric foams. US Patent 5,684,055 (1997)

    Google Scholar 

  37. Kumar, V., Schirmer, H.G.: Semi-continuous production of solid-state PET foams. SPE-ANTEC, vol. 2, pp. 2189–2192 (1995)

    Google Scholar 

  38. Rabinovitch, E.B., Isner, J.D., Sidor, J.A., Wiedl, D.J.: Effect of extrusion conditions on rigid PVC foam. J. Vinyl Addit. Technol. 3, 210–213 (1997)

    Article  Google Scholar 

  39. Mengeloglu, F., Matuana, L.M.: Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Technol. 7, 142–148 (2001)

    Article  Google Scholar 

  40. Mengeloglu, F., Matuana, L.M.: Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. J. Vinyl Addit. Technol. 9, 26–31 (2003)

    Article  Google Scholar 

  41. Lee, S.T., Kareko, L., Jun, J.: Study of thermoplastic PLA foam extrusion. J. Cell. Plast. 44, 293–305 (2008)

    Article  Google Scholar 

  42. Jeong, B., Xanthos, M., Seo, Y.: Extrusion foaming behavior of PBT resins. J. Cell. Plast. 42, 165–176 (2006)

    Article  Google Scholar 

  43. Zhang, S., Rodrigue, D.: Preparation and morphology of polypropylene/wood flour composite foams via extrusion. Polym. Compos. 26, 731–738 (2005)

    Article  MATH  Google Scholar 

  44. Li, Q., Matuana, L.M.: Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88, 3139–3150 (2002)

    Article  Google Scholar 

  45. Han, X., Koelling, K.W., Tomasko, D.L., Lee, L.J.: Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polym. Eng. Sci. 42(11), 2094–2106 (2004)

    Article  Google Scholar 

  46. Han, X., Zeng, C., Lee, L.J., Koelling, K.W., Tomasko, D.L.: Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym. Eng. Sci. 43(6), 1261–1275 (2004)

    Article  Google Scholar 

  47. Lee, M., Tzoganakis, C., Park, C.B.: Extrusion of PE/PS blends with supercritical carbon dioxide. Polym. Eng. Sci. 38(7), 1112–1120 (2004)

    Google Scholar 

  48. Siripurapu, S.S., Gay, Y.J., Royer, J.R., Desimone, J.M., Spontak, R.J.: Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer 43(20), 5511–5520 (2002)

    Article  Google Scholar 

  49. Park, C.B., Suh, N.P.: Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polym. Eng. Sci. 36(1), 34–48 (1996)

    Article  MathSciNet  Google Scholar 

  50. Park, C.B., Baldwin, D.F., Suh, N.P.: Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 35(5), 432–440 (1995)

    Article  Google Scholar 

  51. Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous production of microcellular plastics. J. Manuf. Sci. Eng. 118, 639–645 (1996)

    Article  Google Scholar 

  52. Guo, M.C., Heuzey, M.C., Carreau, P.J.: Cell structure and dynamic properties of injection molded polypropylene foams. Polym. Eng. Sci. 47, 1070–1081 (2007)

    Article  Google Scholar 

  53. Martini-Vvedensky, J.E., Suh, N.P., Waldman, F.A.: Microcellular closed cell foams and their method of manufacture. US Patent 4,473,665 (1984)

    Google Scholar 

  54. Trexel. http://www.trexel.com

  55. Xu, J.: Reciprocating-screw injection molding machine for microcellular foam. SPE-ANTEC, pp. 449–453 (2001)

    Google Scholar 

  56. Jacobsen, K., Pierick, D.: Microcellular foam molding: advantages and application examples. SPE-ANTEC, pp. 1929–1933 (2000)

    Google Scholar 

  57. Moore, S.: Foam molding resurgence: sparks competition among processes. Mod. Plast. 11, 23–25 (2001)

    Google Scholar 

  58. Kishbaugh, L.A., Levesque, K.J., Guillemette, A.H., Chen, L., Xu, J., Okamoto, K.T.: Fiber-filled molded foam articles, molding, and process aids (USA). WO:2002026482 (2002)

    Google Scholar 

  59. Wong, S., Lee, J.W.S., Naguib, H.E., Park, C.B.: Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromol. Mater. Eng. 293, 605–613

    Article  Google Scholar 

  60. Crank, J., Park, G.S.: Diffusion in polymers. Academic Press Inc., New York (1968)

    Google Scholar 

  61. Van Krevelen, D.W.: Properties of polymers. Elsevier, New York (1990)

    Google Scholar 

  62. Wissinger, R.G., Paulaitis, M.E.: Swelling and sorption in polymer-CO2 mixtures at elevated pressures. J. Polym. Sci. Part B. Polym. Phys. 25, 2497–2510 (1987)

    Article  Google Scholar 

  63. Wissinger, R.G., Paulaitis, M.E.: Molecular thermodynamic model for sorption and swelling in glassy polymer-CO2 system at elevated pressures. Ind. Eng. Chem. Res. 2530, 842–851 (1991)

    Article  Google Scholar 

  64. Sato, Y., Fujiwara, K., Takikawa, T., Sumarno, Takishima, S., Masuoka, H.: Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162, 261–276 (1999)

    Google Scholar 

  65. Sato, Y., Takikawa, T., Takishima, S., Masuoka, H.: Solubility and diffusion coefficient of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 19, 187–198 (2001)

    Article  Google Scholar 

  66. Zhang, Q., Xanthos, M., Dey, S.K.: In-line measurement of gas solubility in polystyrene and polyethylene terephthalate melts during foam extrusion. MD (Am. Soc. Mech. Eng.), vol. 82 (Porous, Cellular and Microcellular Materials), pp. 75–83 (1998)

    Google Scholar 

  67. Park, C.B., Suh, N.P.: Rapid polymer/gas solution formation for continuous processing of microcellular plastics ASME trans. J. Manuf. Sci. Eng. 118, 639–645 (1996)

    Google Scholar 

  68. Colton, J.S., Suh, N.P.: Nucleation of microcellular foam: theory and practice. Polym. Eng. Sci. 27, 500–503 (1987)

    Article  Google Scholar 

  69. Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 1. Theoretical considerations. Polym. Eng. Sci. 27(7), 485–492 (1987)

    Google Scholar 

  70. Colton, J.S., Suh, N.P.: Nucleation of microcellular thermoplastic foam with additives: part 2. Experimental results and discussion. Polym. Eng. Sci. 27(7), 493–499 (1987)

    Article  Google Scholar 

  71. Lee, J.H., Flumerfelt, R.W.: A refined approach to bubble nucleation and polymer foaming process: dissolved gas and cluster size effects. J. Coll. Interface Sci. 184, 335–348 (1996)

    Article  Google Scholar 

  72. Punnathanam, S., Corti, D.S.: Homogeneous nucleation in stretched fluids: cavity formation in the superheated Lennard-Jones liquid. Ind. Eng. Chem. Res. 41, 1113–1121 (2002)

    Article  Google Scholar 

  73. Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. I. bubble nucleation in concentrated polymer solutions. J. Polym. Sci. Part B. Polym. Phys. 28, 711–741 (1990)

    Article  Google Scholar 

  74. Han, J.H., Han, C.D.: A study on bubble nucleation in polymeric liquid. II. Theoretical consideration. J. Polym. Sci. Part B. Polym. Phys. 28, 743–761 (1990)

    Article  Google Scholar 

  75. Leung, S.N., Park, C.B, Li, H.: Numerical simulation of polymeric foaming processes using modified nucleation theory. Plast. Rubber Compos. 35, 93 (2006)

    Article  Google Scholar 

  76. Colton, J.S., Suh, N.P.: The nucleation of microcellular thermoplastic foam with additives. Part II: experimental results and discussion. Polym. Eng. Sci. 27, 493–499 (1987)

    Article  Google Scholar 

  77. Behravesh, A.H., Park, C.B., Cheung, L.K., Venter, R.D.: Extrusion of polypropylene foams with hydrocerol and isopentane. J. Vinyl Addit. Technol. 2(4), 349–357 (1996)

    Article  Google Scholar 

  78. Lee, C., Sheth, S.H., Kim, R.: Gas absorption with filled polymer systems. Polym. Eng. Sci. 41(6), 990–997 (2001)

    Article  Google Scholar 

  79. Ramesh, N.S., Rasmussen, D.H., Campbell, G.A.: The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass-transition particles. 1. Mathematical-modeling and numerical simulation. Polym. Eng. Sci. 34, 1685–1697 (1994)

    Google Scholar 

  80. Lee, S.T., Ramesh, N.S.: In: Kumar, V., Seeler, K.A. (eds.) Cellular and Microcellular Materials, 76, pp. 71–80. ASME, New York (1996)

    Google Scholar 

  81. Park, C.B., Behravesh, A.H., Venter, R.D.: Chapter 8: a strategy for suppression of cell coalescence in the extrusion of microcellular HIPS foams. In: Khemani, K. (ed.) Foam book: recent advances in polymeric foam science and technology. ACS, Washington, pp. 115–129 (1997)

    Chapter  Google Scholar 

  82. Baldwin, D.F., Park, C.B., Suh, N.P.: A microcellular processing study of poly(ethylene terephtalate) in the amorphous and semicrystalline states: part II. Cell growth and process design. Polym. Eng. Sci. 36, 1446–1453 (1996)

    Article  Google Scholar 

  83. Barlow, C., Kumar, V., Flinn, B., Bordia, R.K., Weller, J.: Impact strength of high density solid-state microcellular polycarbonate foams. J. Eng. Mater. Technol. 123(2), 229–233 (2001)

    Article  Google Scholar 

  84. Collias, D.I., Baird, D.G., Borggreve, R.J.M.: Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18), 3978–3983 (1994)

    Article  Google Scholar 

  85. Collias, D.I., Baird, D.G.: Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrixes and microcellular foams. Polym. Eng. Sci. 35(14), 1167–1177 (1995)

    Article  Google Scholar 

  86. Matuana, L.M., Park, C.B., Balatinecz, J.J.: Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cell. Polym. 17(1), 1–16 (1998)

    Google Scholar 

  87. Kumar, V.: Microcellular plastics: does microcellular structure always lead to an improvement in impact properties? 60th SPE-ANTEC, vol. 2, pp. 1892–1896 (2002)

    Google Scholar 

  88. Juntunen, R.P., Kumar, V., Weller, J.E., Bezubic, W.P.: Impact strength of high density microcellular poly(vinyl chloride) foams. J. Vinyl Addit. Technol. 6(2), 93–99 (2000)

    Article  Google Scholar 

  89. Seeler, K.A., Kumar, V.: Tension-tension fatigue of microcellular polycarbonate: initial results. J. Reinf. Plast. Compos. 12(3), 359–376 (1993)

    Article  Google Scholar 

  90. Kumar, V., VanderWel, M., Weller, J., Seeler, K.A.: Experimental characterization of the tensile behavior of microcellular polycarbonate foams. J. Eng. Mater. Technol. 116(4), 439–445 (1994)

    Article  Google Scholar 

  91. Arora, K.A, Lesser, A.J, McCarthy, T.J.: Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polym. Eng. Sci. 38(12), 2055–2062 (1998)

    Article  Google Scholar 

  92. Legge, N.R., Holden, G., Schroeder, H.E.: Thermoplastic elastomer: a comprehensive review. Hanser Publishers, Munich (1987)

    Google Scholar 

  93. Walker, B.M., Rader, C.P.: Handbook of Thermoplastic Elastomers. Van Nostrand Reinhold Co., New York (1998)

    Google Scholar 

  94. Abdou-Sabet, S., Patel, R.P.: Morphology of elastomeric alloys. Rubber Chem. Technol. 64, 769–779 (1991)

    Google Scholar 

  95. Gessler, A.M., Haslett, W.H.: Process for preparing a vulcanized blend of crystalline polypropylene and chlorinated butyl rubber. US Patent 3,037,954 (1962)

    Google Scholar 

  96. Gottler, W.K., Richwine, J.R., Wille, F.J.: The rheology and processing of olefin-based thermoplastic vulcanizates. Rubber Chem. Technol. 55, 1448–1463 (1982)

    Google Scholar 

  97. Dutta, A., Cakmak, M.: Influence of composition and processing history on the cellular morphology of the foamed olefinic thermoplastic elastomers. Rubber Chem. Technol. 65, 932–955 (1992)

    Google Scholar 

  98. Brzoskowski, R., Wang, Y., La Tulippe, C., Dion, B., Cai, H., Sadeghi, H.: Extrusion of low density chemically foamed thermoplastic vulcanizates. SPE-ANTEC (Annual Technical Conference) Technical Papers, vol. 3, pp. 3204–3208 (1998)

    Google Scholar 

  99. Wang, Y., Cai, H., Freitas, L., Dion, B., Brzoskowski, R.: TPV foaming with water-releasing compound. Kunststoffe Plast. Eur. 88(12), 2170–2172 (1998)

    Google Scholar 

  100. Sahnoune, A.: Foaming of thermoplastic elastomers with water. J. Cell. Plast. 37(2), 149–159 (2001)

    Article  Google Scholar 

  101. Spitael, P., Macosko, C.W.: Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 44(11), 2090–2100 (2004)

    Article  Google Scholar 

  102. Kropp, D., Michaeli, W., Herrmann, T., Schroder, O.: Foam extrusion of thermoplastic elastomers using CO2 as blowing agent. J. Cell. Plast. 34(4), 304–311 (1998)

    Google Scholar 

  103. Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates (TPVs) with carbon dioxide and nitrogen. Cell. Polym. 25, 19–33 (2006)

    Google Scholar 

  104. Kim, S.G., Park, C.B., Kang, B.S., Sain, M.: Foamability of thermoplastic vulcanizates blown with various physical blowing agents. J. Cell. Plast. 44, 53–67 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Kuk Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kim, J.K., Pal, K. (2010). Recent Past about WPC Work. In: Recent Advances in the Processing of Wood-Plastic Composites. Engineering Materials, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14877-4_4

Download citation

Publish with us

Policies and ethics