Skip to main content

Abstract

The genus Carthamus L. is a member of the tribe Cynareae, subfamily Tubulifloreae, and family Asteraceae. It includes ~25 species and subspecies distributed from northwestern India westward to and around Mediterranean Sea. Most of the wild species of the genus including the cultivated C. tinctorius are diploid with 2n = 2x = 20, 2n = 2x = 22, and 2n = 2x = 24. The three self-compatible species, C. lanatus, C. turkestanicus, and C. baeticus, are polyploid (2n = 4x = 44 and 2n = 6x = 64) in constitution. The economic importance of the genus, history of its diversification, basic chromosome numbers, genome size variation in the species, origin and evolution of the cultivated species and its genetic diversity, origin of polyploid species, taxonomic sections in the genus, breeding objectives, and achievements are described in this review and updated with new elements obtained through molecular data. The recent efforts taken toward accelerating molecular breeding and (or) marker-assisted genetic improvement in safflower via construction of genetic linkage maps are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30

    Article  CAS  Google Scholar 

  • Anonymous (2002) Safflower research in India. Directorate of Oilseeds Research, Hyderabad, 96 pp

    Google Scholar 

  • Anonymous (1997–1998) Annual progress report. Safflower. Directorate of Oilseeds Research, Rajendranagar, Hyderabad, India, 121 p

    Google Scholar 

  • Ash GJ, Raman R, Crump NS (2003) An investigation of genetic variation in Carthamus lanatus in New South Wales, Australia, using inter simple sequence repeats (ISSR) analysis. Weed Res 43:208–213

    Article  CAS  Google Scholar 

  • Ashri A (1957) Cytogenetics and morphology of Carthamus L. species and their hybrids. PhD Thesis, University of California, California, USA

    Google Scholar 

  • Ashri A (1971a) Evaluation of world collection of safflower C. tinctorius L.1 Reaction to several diseases and association with morphological characters in Israel. Crop Sci 11:253–257

    Article  Google Scholar 

  • Ashri A (1971b) Evaluation of world collection of C. tinctorius L. 11 Resistance to safflower fly A. helianthi R. Euphytica 20:410–415

    Article  Google Scholar 

  • Ashri A (1973) Divergence and evolution in the safflower genus Carthamus L. Final Research Report, PL 480, USDA, Hebrew University of Jerusalem, Rehovot, Israel

    Google Scholar 

  • Ashri A (1975) Evaluation of the germplasm collection of safflower Carthamus tinctorius L. V Distribution and regional divergence for morphological characters. Euphytica 24:651–659

    Article  Google Scholar 

  • Ashri A, Efron Y (1964) Inheritance studies with fertile interspecific hybrids of three Carthamus L. species. Crop Sci 4:510–514

    Article  Google Scholar 

  • Ashri A, Efron Y (1965) Genic and chromosomal homology between three Carthamus species. Isr J Agric Res 15:2

    Google Scholar 

  • Ashri A, Knowles PF (1960) Cytogenetics of safflower Carthamus L. species and their hybrids. Agron J 52:11–17

    Article  Google Scholar 

  • Ashri A, Zimmer DE, Urie AL, Cahaner A, Marani A (1974) Evaluation of world collection of safflower Carthamus tinctorius L. IV Yield and yield components and their relationships. Crop Sci 14:799–802

    Article  Google Scholar 

  • Ashri A, Knowles PF, Urie AL, Zimmer DE, Cahaner A, Marani A (1975) Evaluation of the germplasm collection of safflower Carthamus tinctorius. III Oil content and iodine value and their associations with other characters. Econ Bot 31:38–46

    Article  Google Scholar 

  • Aslam M, Hazara GR (1993) Evaluation of world collection of safflower (Carthamus tinctorius L) for yield and other agronomic characters. In: Dajue L, Yuanzhou H (eds) 3rd International Safflower conference, Beijing, China, 9–13 June 1993, p 238

    Google Scholar 

  • Asp T, Frei UK, Didion T, Nielsen KK, Lubberstedt T (2007) Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol 7:36

    Article  PubMed  CAS  Google Scholar 

  • Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    Article  CAS  Google Scholar 

  • Baker HG (1970) Taxonomy and the biological species concepts in cultivated plants. In: Frankel OH, Bennett E (eds) Genetic resources in plants – their exploration and conservation. Blackwell Scientific Publications, Oxford, pp 49–68

    Google Scholar 

  • Baldwin BG (1993) Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Am J Bot 80:222–238

    Article  CAS  Google Scholar 

  • Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol 10:449–463

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan R, Suresh KK (2000) Some strategies for obtaining core samples from germplasm collections using strata of geographical origins—A case study in safflower (Carthamus tinctorius L.). Stat Appl 2:49–64

    Google Scholar 

  • Balakrishnan R, Suresh KK (2001a) Strategies for developing core collections of safflower (Carthamus tinctorius L.) germplasm – Part II. Using an information measure for obtaining a core sample with predetermined diversity levels for several descriptors simultaneously. Indian J Plant Genet Resour 14:32–42

    Google Scholar 

  • Balakrishnan R, Suresh KK (2001b) Strategies for developing core collections of safflower (Carthamus tinctorius L.) germplasm – Part III. Obtaining diversity groups based on an information. Indian J Plant Genet Resour 14:342–349

    Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from Compositae. Mol Phylogenet Evol 1:3–16

    Article  CAS  PubMed  Google Scholar 

  • Bamber CJ (1916) Plants of the Punjab. Supdt Govt Printing, Punjab, India

    Google Scholar 

  • Bassiri A (1977) Identification and polymorphism of cultivars and wild ecotypes of safflower based on isozyme patterns. Euphytica 26:709–719

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2004) Plant DNA C-values Database (release 3.0, December 2004). http://www.rbgkew.org.uk/cval/homepage.html

  • Bergman JW, Riveland NR (1983) Registration of ‘Sidwill’ safflower. Crop Sci 23:1012–1013

    Article  Google Scholar 

  • Bergman JW, Carlson G, Kushnak G, Riveland NR, Stallknecht G (1985) Registration of ‘Oker’ safflower. Crop Sci 25:1127–1128

    Article  Google Scholar 

  • Bergman JW, Baldridge DE, Brown PL, Dubbs AL, Kushnak GD, Riveland NR (1987) Registration of ‘Hartman’ safflower. Crop Sci 27:1090–1091

    Article  Google Scholar 

  • Bergman JW, Carlson G, Kushnak G, Riveland NR, Stallknecht G, Welty LE, Wichman V (1989a) Registration of ‘Girard’ safflower. Crop Sci 29:828–829

    Article  Google Scholar 

  • Bergman JW, Carlson G, Kushnak G, Riveland NR, Stallknecht G, Welty LE, Wichman V (1989b) Registration of ‘Finch’ safflower. Crop Sci 29:829

    Article  Google Scholar 

  • Biagetti M, Vitellozzi F, Ceoloni, C (1999) Physical mapping of wheat Aegilops longissima breakpoints in mildewresistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome 42:1013–1019

    Article  CAS  Google Scholar 

  • Bornet B, Goraguer F, Joly G, Branchard M (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45:481–484

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD (1989) The case for core collections. In: Brown AHD (ed) The use of plant genetic resources, Cambridge University Press, Cambridge, England, pp 136–156

    Google Scholar 

  • Carapetian J, Estilai A (1997) Genetics of isozyme coding genes in safflower. In: Corleto A, Mundel HH (eds) Proceedings of the 4th international safflower conference: Safflower: a multipurpose species with unexploited potential and world adaptability, Adriatica, Editrice, Bari, Italy, pp 235–237

    Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    CAS  PubMed  Google Scholar 

  • Cassini H (1819) Dictionaire de Sciences Naturelles. Paris. Cited by King R., Dawson

    Google Scholar 

  • Cervantes-Martinez JE, Rey-Ponce M, Velazquez-Cagal M (2001) Evaluation of accessions from world collection of safflower for Alternaria incidence and seed oil content. In: Williston ND, Sidney MT, Bergman JW and Mundel HH (eds) Proceedings of the 5th international safflower conference, p 163

    Google Scholar 

  • Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol 7:60

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115(6):747–755

    Article  CAS  PubMed  Google Scholar 

  • Clevinger JA, Panero JL (2000) Phylogenetic analysis of Silphium and subtribe Engelmanniinae (Asteraceae: Heliantheae) based on ITS and ETS sequence data. Amer J Bot 87:565–572

    Article  CAS  Google Scholar 

  • Cuadrado A, Jouve N (1997) Distribution of highly repeated DNA sequences in species of the genus Secale. Genome 40:309–317

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594

    Article  CAS  PubMed  Google Scholar 

  • Damodaram T, Hegde DM (2002) Oilseeds situation: a statistical compendium 2002. Directorate of Oilseeds Research, Rajendranagar, Hyderabad 500030, India, p. 471

    Google Scholar 

  • Da Via DJ, Knowles PF, Klisiewicz JM (1981) Evalution of the safflower world collection for resistance to Phytophthora. Crop Sci 21:226–229

    Article  Google Scholar 

  • De Candolle AP (1838) Prodromus Systematis Naturalis Regni Vegetabilis 6. Paris

    Google Scholar 

  • DeJong DCD (1965) A systematic study of the genus Astranthium (Compositae, Asterae). Biol Ser Michigan State Univ Agric Mus 2:433–528

    Google Scholar 

  • Deshpande RB (1952) Wild safflower (Carthamus oxyacantha Bieb.) – a possible oil crop for the desert and arid regions. Indian J Genet 12:10–14

    Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Dittrich M (1969) Anatomische Untersuchungen anden Früchten von Carthamus L. und Carduncellus Adans. (Compositae). Candollea 24:263–277

    Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1999a) Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles versus chloroplast haplotypes. Mol Biol Evol 16:354–362

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1999b) Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex. Proc Natl Acad Sci USA 96: 10741–10745

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Pfeil BE (2000) Confirmation of shared and divergent genomes in the Glycine tabacina polyploidy complex (Leguminosae) using histone H3-D sequences. Syst Bot 25:437–448

    Article  Google Scholar 

  • Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Hegde DM (2005) Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52:821–830

    Article  Google Scholar 

  • Efron Y, Peleg M, Ashri A (1973) Alcohol dehydrogenase allozymes in the safflower genus Carthamus L. Biochem Genet 9:299–308

    Article  CAS  PubMed  Google Scholar 

  • Estiali A, Knowles PF (1976) Cytogenetic studies of Carthamus divaricatus with eleven pairs of chromosomes and its relationship to other Carthamus species (Compositae). Am J Bot 63:771–782

    Article  Google Scholar 

  • Estiali A, Knowles PF (1978) Relationship of Carthamus leucocaulos to other Carthamus species (Compositae). Can J Genet Cytol 20:221–233

    Google Scholar 

  • Estilai A (1971) Cytogenetic studies of Carthamus species (Compositae) with eleven pairs of chromosomes. PhD Thesis, University of California, Davis, CA, USA

    Google Scholar 

  • Estilai A (1977) Genus Carthamus as an example of plant evolution. Acta Ecol Iran 2:70–76

    Google Scholar 

  • Ford VS, Gottlieb LD (1999) Molecular characterization of PgiC in a tetraploid plant and its diploid relatives. Evolution 53:1060–1067

    Article  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Schubert I (1998) Characterization of plant genomes using fluorescence in situ hybridization. In: Maluszynska J (ed) Plant cytogenetics. Proceedings of Spring symposium, Cieszyn, Prace Naukowe Uniwersytetu Slaskiego #1696, Katowice, 19–22 May 1997, pp 113–123

    Google Scholar 

  • Galasso I, Schmidt T, Pignone P (2001) Identification of Lens culinaris ssp. culinaris chromosomes by physical mapping of repetitive DNA sequences. Chromosome Res. 9:199–209

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Jacas N, Sussana A (1992) Karyological notes on Centaurea sect. Acrocentron (Asteracae). Plant Syst Evol 179:1–18

    Google Scholar 

  • Garcia-Jacas N, Sussana A, Ilarslan R (1996) Aneuploidy in Centaureinae (Compositae): is n = 7 the end of the series? Taxon 45:39–42

    Article  Google Scholar 

  • García-Moreno MJ, Velasco L, Pèrez-Vich B (2008) Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica. doi:10.1007/s10681-010-0139-6

    Google Scholar 

  • Garnatje T, Garcia S, Vilatersana R, Vallès J (2006) Genome size variation in the genus Carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Ann Bot 97:461–467

    Article  CAS  PubMed  Google Scholar 

  • Gates FC (1940) Flora of Kansas. Agricultural Experiment Station, Kansas State College of Agriculture and Applied Science, Manhattan, KS, pp 99:251

    Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci 96:14400–14405

    Article  CAS  PubMed  Google Scholar 

  • Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eriterian sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Raina SN, Ogihara Y (2002) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus–Vigna complex. Mol Phylogenet Evol 22:1–19

    Article  CAS  PubMed  Google Scholar 

  • Gregory PJ (1935) Cytological studies in safflower (Carthamus tinctorius L.). Proc Indian Acad Sci Sect B 1:763–777

    Google Scholar 

  • Hamdan YAS, Velasco L, Pèrez-Vich B (2008) Development of SCAR markers linked to male sterility and very high linoleic acid content in safflower. Mol Breed 22:385–393

    Article  CAS  Google Scholar 

  • Han Y, Li D (1992) Evaluation of safflower (Carthamus tinctorius L) germplasm – analysis in fatty acid composition of seeds of domestic and exotic safflower varieties. Bot Res 6:28–35

    Google Scholar 

  • Hanelt P (1961) Zur Kenntnis von Carthanus tinctorius L. Kulturpflanze 9:114–145 (in German)

    Article  Google Scholar 

  • Hanelt P (1963) Monographische Ubersicht der Gattung Carthamus L. (Compositae). FEDES Rep 67:41–180

    Google Scholar 

  • Harrigan EKS (1987) Safflower registration of cv. Sironaria. Sesame Safflower Newsl 3:47–49

    Google Scholar 

  • Harrigan EKS (1989) Review of research of safflower in Australia. In: Ranga Rao V, Ramachandram M (eds) Proceedings of the 2nd international safflower conference, Indian Society of Oilseeds Research ISOR, Directorate of Oilseeds Research, Hyderabad, AP, India, 9–13 Jan 1989, pp 97–100

    Google Scholar 

  • Harvey BL (1964) Natural and artificial alloploids with 22 pairs of chromosomes in the genus Carthamus L. PhD Dissertation, University of California, Davis, CA, USA

    Google Scholar 

  • Harvey BL, Knowles PF (1965) Natural and artificial alloploids with 22 pairs of chromosomes in the genus Carthamus (Compositae). Can J Genet Cytol 7:126–139

    Google Scholar 

  • Heaton TC, Klisiewicz JM (1981) A disease-resistant safflower alloploid from Carthamus tinctorius L. 9 C lanatus L. Can J Plant Sci 61:219–224

    Article  Google Scholar 

  • Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore R, Lai Z, Rieseberg LH, Knapp SJ (2008) SSRs and INDELs mined from the sunfl ower EST database: abundance, polymorphisms and cross-taxa utility. Theor Appl Genet 117:1021–1029

    Article  CAS  Google Scholar 

  • Henry RD (1992) Some distributional records and floristic notes for the Illinois vascular flora. Trans, Ill. State Acad Sci 85:9–15

    Google Scholar 

  • Hickman JC (1993) The Jepson manual: higher plants of California. University of California Press, Los Angeles, CA, 177:220–227

    Google Scholar 

  • HW (1975) Cassini on Compositae. Oriole Editions, New York

    Google Scholar 

  • Imrie BC, Knowles PF (1970) Inheritance studies in interspecific hybrids between Carthamus flavescens and C. tinctorius. Crop Sci 10:349–352

    Article  Google Scholar 

  • Jauhar P (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859

    Article  CAS  Google Scholar 

  • Jaradat AA, Shahid M (2006) Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Euphytica 53:225–244

    Google Scholar 

  • Jena KK, Khush GS (1990) Introgression of genes from O.officinalis, to cultivated rice, O. sativa. Theo Appl Genet. 80:737–745

    Article  Google Scholar 

  • Jayaramu M, Chatterji AK (1986) Karyological studies on Indian wild safflower, Carthamus oxyacantha M.B. Caryologia 39(2):179–184

    Google Scholar 

  • Johnson RC, Stout DM, Bradley VL (1993) The US collection: a rich source for safflower germplasm. In: Dajue L. Yuanzhou H (eds), Proceedings of the third international safflower conference, Beijing Botanical Garden, Institute of Botany. Chinese Academy of Sciences, Beijing, China, pp 202–208

    Google Scholar 

  • Johnson RC, Bergman JW, Flynn CR (1999) Oil and meal characteristics of core and non-core safflower accessions from the USDA collection. Genet Res Crop Evol 46: 611–618

    Article  Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogentic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340

    Article  CAS  PubMed  Google Scholar 

  • Kadam BS, Patrankar VK (1942) Natural cross-pollination in safflower. Indian J Genet 2:69–70

    Google Scholar 

  • Karve AD (1979) Resistance of safflower (Carthamus tinctorius L.) to insects and diseases. Final Technical Report, USDA PL480 Project No A7-CR-423. Nimbkar Agriculture Research Institute, Phaltan, Maharashtra, India

    Google Scholar 

  • Karve AD (1976) Maintainence and evolution of safflower germplasm and its use in safflower improvement. Annual workshop seminar of AICORPO, April 5-9, College of Agriculture, Nagpur, India, pp 191–202

    Google Scholar 

  • Kelch DG, Baldwin BG (2003) Phylogeny and ecological radiation of new world thistles (Cirsium, Carduae—Compositae) based on ITS and ETS rDNA sequence data. Mol Ecol 12:141–151

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Hussain D, Askari E, Stewart J McD, Malik KA, Zafar Y (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor Appl Genet 101:931–938

    Article  CAS  Google Scholar 

  • Khidir MO (1969a) Cytogenetic and evolutionary investigation on Carthamus species with 32 pairs of chromosomes. Diss Abstr 698-B

    Google Scholar 

  • Khidir MO (1969b) Evolution of the genetic system of safflower (Carthamus L.). Genetica 40:84–88

    Article  Google Scholar 

  • Khidir MO, Knowles PF (1970a) Cytogenetic studies of Carthamus (Compositae) with 32 pairs of chromosomes. I. Intersectional hybridization. Can J Genet Cytol 12:90–99

    Google Scholar 

  • Khidir MO, Knowles PF (1970b) Cytogenetic studies of Carthamus (Compositae) species with 32 pairs of chromosomes. I. Intersectional hybridization. Am J Bot 57:123–129

    Article  Google Scholar 

  • Kleingarten L (1993) In: Notes safflower conference, Billings MT, Mundel HH and Braun J (eds) Lethbridge, AB, Canada, p 5

    Google Scholar 

  • Kim KJ, Jansen RK (1994) Comparisons of Phylogenetic hypothesis among different data sets in dwarf dandelions (Krigia): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst Evol 190:157–185

    Article  CAS  Google Scholar 

  • Klisiewicz JM, Urie AL (1982) Registration of Fusarium resistant safflower (Carthamus tinctorius) germplasm. Crop Sci 22:165

    Article  Google Scholar 

  • Knowles PF (1955) Safflower. Production, processing and utilization. Econ Bot 9:273–299

    Article  CAS  Google Scholar 

  • Knowles PF (1958) Safflower. Adv Agron 10:289–323

    Article  CAS  Google Scholar 

  • Knowles PF (1968) Associations of high levels of oleic acid in the seed oil of safflower (Carthamus tinctorius) with other plant and seed characteristics. Econ Bot 22:195–200

    Article  CAS  Google Scholar 

  • Knowles PF (1969) Centers of plant diversity and conservation of crop germplasm: Safflower. Econ Bot 23:324–329

    Article  Google Scholar 

  • Knowles PF (1972) The plant geneticist’s contribution toward changing lipid and amino acid composition of safflower. J Am Oil Chem Soc 49:27–29

    Article  CAS  Google Scholar 

  • Knowles PF (1980) Safflower. In: Fehr WR and Hadley HH (eds) Hybridization of crop plants. ASA-CSA, Madison, WI, pp 535–547

    Google Scholar 

  • Knowles PF (1989) Safflower. In: Downey RK, Robellen G, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, USA, pp 363–374

    Google Scholar 

  • Knowles PF, Schank SC (1964) Artificial hybrids of Carthamus nitidus Boiss. and C. tinctorius L. (Compositae). Crop Sci 4:596–599

    Article  Google Scholar 

  • Kumar H (1991) Cytogenetics of Safflower. In: Tsuchiya W, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier Science, Dordrecht, Netherlands, pp 251–277

    Google Scholar 

  • Kumar H, Agrawal RK, Lal JP (1990) Interspecific hybridization in safflower. 1. Performance of C. oxyacantha x C. tinctorius derivatives. Seasame Newsletter 5:79–86

    Google Scholar 

  • Kupzow AJ (1932) The geographical variability of the species C. tinctorius L. Bull Appl Genet Plant Breed 9th ser 1:99–181

    Google Scholar 

  • Ladd SL, Knowles PF (1970) Inheritance of stearic acid in the seed oil of safflower (Carthamus tinctorius L.). Crop Sci 10:525–527

    Article  Google Scholar 

  • Lee J, Baldwin BG, Gottlieb LD (2002) Phylogeny of Stephanomeria and related genera (Compositae-Lactuceae) based on analysis of 18S-26S nuclear rDNA ITS and ETS sequences. Amer J Bot 89:160–168

    Article  CAS  Google Scholar 

  • López-González G (1989) Acerca de la clasificación natural del género Carthamus L., s.l. Anales del Jardín Botánico de Madrid 47:11–34

    Google Scholar 

  • Li D, Mundel HH (1996) Safflower. Carthamus tinctorius L. promoting the conservation and use of underutilized and neglected crops, vol 7. Institute of Plant Genetics and Crop Plant Research and International Plant Genetic Resources Institute, Gatersleben, 83 p

    Google Scholar 

  • Li CB, Zhou AL, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939

    Article  CAS  PubMed  Google Scholar 

  • López González G (1990) Acerca de la classificación natural del género Carthamus L., s. l. Ann Jard Bot Madrid 47:11–34

    Google Scholar 

  • Lysák MA, Dolezelová M, Horry JP, Swennen R, Dolezel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theoretical and Applied Genetics 98:1344–1350

    Article  Google Scholar 

  • Mason-Gamer RJ (2001) Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule bound starch synthase gene sequences. Syst Bot 26:757–768

    Google Scholar 

  • Markley N, Nykiforuk C, Boothe J, Moloney M (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int, June 2006. http://www.sembiosys.ca/Docs/Biopharma.pdf

  • Martin WC and Hutchins CR (1981) A flora of New Mexico. J Cramer 2:2003–2008

    Google Scholar 

  • Matsuoka Y (2005) Origin matters: lessons from the search for the wild ancestor of maize. Breed Sci 55(4):383–390

    Article  CAS  Google Scholar 

  • Mayerhofer R, Archibald C, Bowles V, Good AG (2010) Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 53(4):266–276

    Article  CAS  PubMed  Google Scholar 

  • McPherson MA, Good AG, Topinka KC, Hall LM (2004) Theoretical hybridization potential of transgenic safflower (Carthamus tinctorius L.) with weedy relatives in the New World. Can J Plant Sci 84:923–934

    Google Scholar 

  • Millan T, Osuna F, Cobos F, Torres AM, Cukero JI (1996) Using RAPDs to study Phylogenetic relationships in Rosa. Theor Appl Genet 92:273–277

    Article  CAS  Google Scholar 

  • Mundel HH, Blackshaw RE, Byers JR, Huang HC, Johnson DL, Keon R, Kubik J, Mckenzie R, Otto B, Roth B, Stanford K (2004) Safflower production on the Canadian prairies: revisited in 2004. Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, 37 pp

    Google Scholar 

  • Munz PA (1968) A California flora and supplements. University of California Press, Berkeley, CA 165 pp

    Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95:119–125

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj G (2001) Nutritional characteristics of three Indian safflower cultivars. In: Bergman JW, Mundel HH, Jensen JL, Flynn CR, Grings EE, Tanaka DL, Riveland NR, Johnson RC, Hill AB (eds), Proceedings of the fifth international safflower conference. Williston, North Dacota and Sidney, MT, USA, pp 303–305

    Google Scholar 

  • Negi MS, Sabharwal V, Bhat SR, Lakshmikumaran M (2004) Utility of AFLP markers for the assessment of genetic diversity within Brassica nigra germplasm. Plant Breed 123:13–16

    Article  CAS  Google Scholar 

  • Nimbkar N (2002) Safflower rediscovered. Times Agric J 2:32–36

    Google Scholar 

  • Parida A, Raina SN, Narayan RKJ (1990) Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82: 25–133

    Article  CAS  Google Scholar 

  • Pascual-Villalobos MJ, Alberquerque N (1996) Genetic variation of a safflower germplasm collection grown as a winter crop in southern Spain. Euphytica 92:327–332

    Article  Google Scholar 

  • Patel JS, Narayana GV (1935) Chromosome numbers in safflower. Curr Sci 4:412

    Google Scholar 

  • Patil MB, Shinde YM, Attarde KA (1993) Evaluation of safflower cultures for resistance to Alternaria leaf spot (Alternaria carthami) and management strategies. In: Li D, Yuanzhou H (eds) Proceedings of the 3rd international safflower conference, Beijing, China, 14–18 June 1993, pp 269–278

    Google Scholar 

  • Peng S, Feng N, Guo M, Chen Y, Guo Q (2008) Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem Syst Ecol 36:531–538

    Article  CAS  Google Scholar 

  • Pich U, Fritsch R, Schubert I (1996) Closely related Allium species (Alliaceae) share a very similar satellite sequence. Plant Syst Evol 202:255–264

    Article  CAS  Google Scholar 

  • Portis E, Barchi L, Acquadro A, Macua JI, Lanteri S (2005) Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed 124:299–304

    Article  CAS  Google Scholar 

  • Price HJ (1976) Evolution of DNA content in higher plants. Botanical Review 42:27–52

    Article  CAS  Google Scholar 

  • Raina SN, Bisht MS (1988) DNA amounts and chromosome compactness in Vicia. Genetica 77:65–77

    Article  Google Scholar 

  • Raina SN, Mukai Y (1999) Detection of variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    Article  CAS  Google Scholar 

  • Raina SN, Ogihara Y (1994) Chloroplast DNA diversity in Vicia faba and its close wild relatives: Implications for reassessment. Theor Appl Genet 88:261–266

    Article  CAS  Google Scholar 

  • Raina SN, Ogihara Y (1995) Ribosomal DNA repeat unit polymorphism in 49 Vicia species. Theor Appl Genet 90:477–486

    Article  CAS  Google Scholar 

  • Raina SN, Rees H (1983) DNA variation between and within chromosome complements of Vicia species. Heredity 51:335–346

    Article  Google Scholar 

  • Raina SN, Srivastav PK (1986) Nuclear DNA variation in Tephrosia. Genetica 69:27–33

    Article  Google Scholar 

  • Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:1–10

    Article  Google Scholar 

  • Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001a) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772

    Article  CAS  PubMed  Google Scholar 

  • Raina SN, Mukai Y, Kawaguchi K, Goel S, Jain A (2001b) Physical mapping of 18S-5.8S-26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845

    Article  CAS  Google Scholar 

  • Raina SN, Sharma S, Sasakuma T, Kishi M, Vaishnavi S (2005) Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Hered 96:424–429

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar RL, Roopa VK, Soregaon CD, Satish D (2008) Molecular diversity in Carthamus species and development of inter-specific mapping population for the first molecular map in safflower. In: 7th international safflower conference, Waaga Waaga, Australia, pp 3–6

    Google Scholar 

  • Rubis DD (2001) Developing new characteristics during 50 years of safflower breeding. In: Bergman JW, Mundel HH (eds) Proceedings of the 5th international safflower conference, Williston, ND, and Sidney, MT, 23–27 July 2001

    Google Scholar 

  • Rudd S (2003) Expressed sequence tags: Alternative or complement to whole genome sequences? Trends in Plant Science 8:321–329

    Article  CAS  PubMed  Google Scholar 

  • Rydberg PA (1971) Flora of the prairies and plains of central North America. Vol. 2. Dover Pub., New York, NY, p 884

    Google Scholar 

  • Sasanuma T, Sehgal D, Sasakuma T, Raina SN (2008) Phylogenetic analysis of Carthamus species based on the nucleotide sequence of nuclear encoded SACPD gene and chloroplast trnL-F IGS region. Genome 51:721–727

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Donoghue MJ, Zhang D (1997) Evolution of alcohol dehydrogenase genes in peonies (Paeonia): Phylogenetic relationships of putative nonhybrid species. Mol Biol Evol 14:994–1007

    CAS  PubMed  Google Scholar 

  • Schank SC (1961) Cytogenetics of hybrids of Carthamus species with ten pairs of chromosomes. PhD Thesis, University of California, Davis, USA

    Google Scholar 

  • Schank SC, Knowles PF (1964) Cytogenetics of hybrids of Carthamus species (Compositae) with ten pairs of chromosomes. Am J Bot 51:1093–1102

    Article  Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius L.) cultivars by DNA fingerprints. Euphytica 146:67–76

    Article  CAS  Google Scholar 

  • Sehgal D, Raina SN (2008) DNA markers and germplasm resource diagnostics: new perspectives in crop improvement and conservation strategies. In: Arya ID, Arya S (eds) Utilization of biotechnology in plant sciences. Rastogi Press, Meerut, India, pp 39–54

    Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008a) Advent of DNA markers to decipher genome sequence polymorphism. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes. CRC, New York, USA, pp 477–495

    Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008b) Applicability of DNA markers for genome diagnostics of grain legumes. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes. CRC, New York, USA, pp 497–557

    Google Scholar 

  • Sehgal D, Rajpal VR, Raina SN (2008c) Chloroplast DNA diversity reveals the contribution of the two wild species in the origin and evolution of diploid safflower (Carthamus tinctorius L.). Genome 51:638–643

    Article  CAS  PubMed  Google Scholar 

  • Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2008d) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470

    Article  PubMed  CAS  Google Scholar 

  • Sehgal D, Raina SN, Devarumath RM, Sasanuma T, Sasakuma T (2009) Nuclear DNA assay in solving issues related to ancestry of the domesticated diploid safflower (Carthamus tinctorius L.) and the polyploidy (Carthamus) taxa, and phylogenetic and genomic relationships in the genus Carthamus L. (Asteraceae). Mol Phylogenet Evol 53:631–644

    Google Scholar 

  • Sharma S, Raina SN (2005) Organisation and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genet Res 109:15–26

    Article  CAS  Google Scholar 

  • Sharma TR, Jana S (2002) Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theor Appl Genet 105:306–312

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ (1989) Vascular plants of northern Utah: an identification manual. Utah State University Press, Logan, UT. Addenda, pp 348

    Google Scholar 

  • Sherman M (1946) Karyotype evolution: a cytogenetic study of seven species and six interspecific hybrids of Crepis. Univ Calif Publ Bot 18:369–408

    Google Scholar 

  • Shiran B, Raina SN (2001) Evidence of rapid evolution and incipient speciation in Vicia sativa species complex based on nuclear and organellar RFLPs and PCR analysis. Genet Resour Crop Evol 48:519–532

    Article  Google Scholar 

  • Singh V, Nimbkar N (2007) Safflower (Carthamus tinctorius L.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, vol 4: Oil seed crops. CRC, New York, USA, pp 167–194

    Google Scholar 

  • Singh KP, Singh A, Raina SN, Singh AK, Ogihara Y (2002) Ribosomal DNA repeat unit polymorphism and heritability in peanut (Arachis hypogeae) accessions and related wild species. Euphytica 123:211–220

    Article  CAS  Google Scholar 

  • Singh V, Deshpande MB, Nimbkar N (2003a) NARI-NH-1: the first non-spiny hybrid safflower released in India. Sesame Safflower Newsl 18:77–79

    Google Scholar 

  • Singh V, Rathod DR, Deshpande MB, Deshmukh SR, Nimbkar N (2003b) Breeding for wilt resistance in safflower. In: Extended summaries, National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils, ISOR, Directorate of Oilseeds Research, Hyderabad, India, 28–30 Jan 2003, pp 368–370

    Google Scholar 

  • Singh A, Devarumath RM, Rama Rao S, Singh VP, Raina SN (2007) Assessment of genetic diversity, and phylogentic relationships based on ribosomal DNA repeat unit length variation and internal transcribed spacers (ITS) sequences in chickpea (Cicer arietinum) cultivars and wild species. Genet Resour Crop Evol 55:65–79

    Article  CAS  Google Scholar 

  • Singh RP, Abidi AB (2005) Protein enriched biscuits from safflower (Carthamus tinctorius L.) cake. Beverage Food World 32:46

    Google Scholar 

  • Smith JR (1996) Safflower. AOCS, Champaign, IL, USA, p 624

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Colombia University Press, New York, USA

    Google Scholar 

  • Song K, Lu P, Tang k, Osborn TC (1995) Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London, UK

    Google Scholar 

  • Stewart JL (1869) Punjab plants. The Governments Press, Public Works Department, Lahore

    Google Scholar 

  • Suresh KK, Balakrishnan R (2001) Strategies for developing core collection of safflower (Carthamus tinctorius L.) germplasm – Part 1. Sampling from diversity groups of quantitative morphological descriptors. Indian J. Plant Genet Resour 14:22–31

    Google Scholar 

  • Susanna A, Garcia-Jacas N, Soltis DE, Soltis PS (1995) Phylogenetic relationships in tribe Cardueae (Asteraceae) based on ITS sequences. Amer J Bot 82:1056–1068

    Article  Google Scholar 

  • Susanna A, Vilatersana R (1996) Las afinidades de Ferneniasia Susanna (Compositae), o rectificar es de sabios. Anales Jard Bot Madrid 544:355–357

    Google Scholar 

  • Taketa S, Ando H, Takeda K, Ichii M, Bothmer RV (2005) Ancestory of American Polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. Ann Bot 96:23–33

    Article  CAS  PubMed  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposons-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  • Thomas CA (1971) Registration of ‘VFR-1’ safflower germplasm. Crop Sci 11:606

    Google Scholar 

  • Tobgy HA (1943) A cytological study of Crepis fuliginosa, C. neglecta, and their F1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosme number. J Genet 45:67–111

    Article  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255

    Article  CAS  PubMed  Google Scholar 

  • Urie AL, Knowles PF (1972) Safflower introductions resistant to Verticillium wilt. Crop Sci 12:545–546

    Article  Google Scholar 

  • Vander Stappen J, Marant S, Volckaert G (2003) Molecuar characterization and phylogenetic utility of the rDNA external transcribed spacer region in Stylosanthes (Fabaceae). Theor Appl Genet 107:291–298

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK et al. (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci. 168, 195–202

    Article  CAS  Google Scholar 

  • Van de Ven WTG, Duncan N, Ramsay G, Phillips M, Powell W, Waugh R (1993) Taxonomic relationships between V. faba and its relatives based on nuclear and mitochondrial RFLPs and PCR analysis. Theor Appl Genet 86:71–80

    CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Ronald Press Company, New York, 1951, 364 pp

    Google Scholar 

  • Velasco L, Fernandez-Martinez J (2001) Breeding for oil quality in safflower. In: Bergman JW, Mundel HH (eds) Proceedings of the 5th international safflower conference, Williston, ND, and Sidney, MT, 23–27 July 2001, pp 133–137

    Google Scholar 

  • Vershinin AV, Alkhimova AG, Heslop-Harrison JS, Potapova TA, Omelianchuk N (2001) Different patterns in molecular evolution of the Triticeae. Hereditas 135:153–160

    Article  CAS  PubMed  Google Scholar 

  • Vilatersana R, Susana A, Garcia-Jacas N, Garnetje T (2000a) Karyology, generic delineation and dysploidy in the genera Carduncellus, Carthamus and Phonus (Asteraceae). Bot J Linn Soc 134:425–438

    Article  Google Scholar 

  • Vilatersana R, Susanna A, Garcia-Jacas N, Garnatje T (2000b) Generic limitation and phylogeny of the Carduncellus-Carthamus complex (Asteraceae) based on ITS sequences. Plant Syst Evol 221:89–105

    Article  CAS  Google Scholar 

  • Vilatersana R, Garnatje T, Susanna A, Garcia-Jacas N (2005) Taxonomic problems in Carthamus (Asteraceae): RAPD markers and sectional classification. Bot J Linn Soc 147:375–383

    Article  Google Scholar 

  • Vilatersana R, Brysting AK, Brochmann C (2007) Molecular evidence for hybrid origins of the invasive polyploids Carthamus creticus and C. turkestanicus (Cardueae, Asteraceae). Mol Phylogenet Evol. doi:10.1016/j.ympev.2007.05.008

    PubMed  Google Scholar 

  • Vincent MA, Cusick AW (1998) New records of alien species in the Ohio vascular flora. Ohio J Sci 98:10–17

    Google Scholar 

  • Volkov RA, Komarova NY, Panchuk II, Hamleben V (2003) Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol Phylogent Evol 29:187–202

    Article  CAS  Google Scholar 

  • Weiss EA (1971) Castor, sesame and safflower. Leonard Hill Books, University Press, Aberdeen, London, UK, pp 529–774

    Google Scholar 

  • Weiss EA (1983) Oilseed crops. Longman Group, London, UK, pp 216–281

    Google Scholar 

  • Weiss EA (2000) Oilseed crops. Chapter 4. Safflower. Longman Group Limited, Longman House, London, UK, pp 93–132

    Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci 92:280–284

    Article  CAS  PubMed  Google Scholar 

  • Xiang QP, Xiang QY, Liston A, Zhang XC (2004) Phylogenetic relationships in Abies (Pinaceae): evidence from PCR-RFLP of the nuclear ribosomal DNA internal transcribed spacer region. Bot J Lin Soc 145:425–435

    Article  Google Scholar 

  • Yang Y-X, Wu W, Zheng Y-L, Chen L, Liu R-J, Huang C-Y (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54:1043–1051

    Article  CAS  Google Scholar 

  • Yazdi-Samadi B, Amiri RM, Ghannadha MR, Abd-Mishani C (2001) Detection of DNA polymorphism in landrace populations of safflower in Iran using RAPD-PCR technique. In: Bergman JW, Mundel HH, Jensen JL, Flynn CR, Grings EE, Tanaka DL, Riveland NR, Johnson RC, Hill AB (eds) Proceedings of the fifth international safflower conference. Williston, North Dakota and Sidney, MT, USA, p 163

    Google Scholar 

  • Yee E, Kidwell KK, Sills GR, Lumpkin TA (1999) Diversity among selected Vigna angularis (Azuki) accessions on the basis of RAPD and AFLP markers. Crop Sci 39:268–275

    Article  CAS  Google Scholar 

  • Zeid M, Schön C, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107:1304–1314

    Google Scholar 

  • Zhang Z (2001) Genetic diversity and classification of safflower (Carthamus tinctorius L.) germplasm by isozyme techniques. In: Bergman J, Mundel HH (eds) Safflower: a multipurpose species with unexploited potential and world adaptability. Proceedings of the 5th international safflower conference, Williston, ND, Sidney MT, 23–27 July, pp 157–162

    Google Scholar 

  • Zhang L, Huang B-B, Kai G-Y, Guo M-L (2006) Analysis of intraspecific variation of Chinese Carthamus tinctorius L. using AFLP markers. Acta Pharm Sin 41:91–96

    Google Scholar 

  • Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koorneef M, Bonnema G (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314

    Article  PubMed  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grant-in-aid for Scientific Research from the Council of Scientific and Industrial Research (CSIR), the Department of Biotechnology (DBT), and the Defence Research and Development Organization (DRDO), Government of India. Vishnu Bhat is thanked for suggestions and support. S.N. Raina is grateful to National Academy of Sciences for award of a Senior Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soom Nath Raina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sehgal, D., Raina, S.N. (2011). Carthamus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_4

Download citation

Publish with us

Policies and ethics