Skip to main content

Abstract

The genus Pachycladon belongs to the Brassicaceae family and is comprised of species endemic to the South Pacific, specifically the South Island of New Zealand and Tasmania. The species in this genus are the product of a Pleistocene intertribal allopolyploidization event followed by rapid adaptive radiation and have been the focus of intense phylogenetic, phylogeographic, molecular ecological, and genetic work. Pachycladon is closely related to the model plant Arabidopsis thaliana and molecular tools developed for the latter have been successfully used to advance genetic studies of Pachycladon. A growing volume of molecular resources and protocols are being developed for Pachycladon, currently the subject of QTL mapping, transcriptome analysis through microarray studies and high-throughput short-read sequencing, genetic transformation, and interspecific and intergeneric hybridization studies. Pachycladon is emerging as a useful model genus to help elucidate the genetic basis of traits that are of interest across the Brassicaceae, most notably those involved in plant speciation, adaptive radiation, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The taxonomic standing of this species is questionable as P. crenatus appears to grade into P. novae-zelandiae, with whom it shares many features. For the purpose of this chapter, therefore, a broad taxonomic concept of P. novae-zelandiae will be adopted that includes P. crenatus.

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    Article  CAS  PubMed  Google Scholar 

  • Al-Shehbaz IA, O’Kane SL, Price RA (1999) Generic placement of species excluded from Arabidopsis. Novon 9:296–307

    Article  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of Brasscaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Asker S, Jerling L (1992) Apomixis in plants. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Towards a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  CAS  PubMed  Google Scholar 

  • Barabas Z, Redei GP (1971) Frequency of androgenesis. Arabidopsis Info Serv 8:28

    Google Scholar 

  • Batt GE, Braun J, Kohn BP, McDougall I (2000) Thermochronological analysis of the dynamics of the Southern Alps, New Zealand. Geol Soc Am Bull 112:250–266

    Article  Google Scholar 

  • Bharti AK, Khurana JP (1997) Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB mechanisms. Photochem Photobiol 65:765–776

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  Google Scholar 

  • Bicknell RA, Heenan PB, Dawson MI, Fletcher PJ, Christey MC (2009) Matromorphy in Pachycladon exile (Brassicaceae) revealed by interspecific hybridization. NZ J Bot 47:139–148

    Article  Google Scholar 

  • Burow M, Muller R, Gershenzon J, Wittstock U (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32:2333–2349

    Article  CAS  PubMed  Google Scholar 

  • Chen BY, Heneen WK (1989) Evidence for spontaneous diploid androgenesis in Brassica napus L. Sex Plant Reprod 2:15–17

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Collins LJ, Biggs PJ, Voelckel C, Joly S (2008) An approach to transcriptome analysis of non-model organisms using short-read sequences. Genome Inf 21:3–14

    Article  CAS  Google Scholar 

  • Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker F, Koch M, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27(1):55–71

    Article  CAS  PubMed  Google Scholar 

  • Dawson MI (1995) Contributions to a chromosome atlas of the New Zealand flora – 33. Miscellaneous species. NZ J Bot 33:477–487

    Google Scholar 

  • Dawson MI (2000) Index of chromosome numbers of indigenous New Zealand spermatophytes. NZ J Bot 38:47–150

    Article  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  • De Lange PJ, Norton DA, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Hitchmough R, Townsend AJ (2009) New Zealand extinct, threatened and at risk vascular plant list. NZ J Bot 47:61–96

    Article  Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends Genet 8:302–307

    CAS  PubMed  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Barto J, Voglmayr H, Greilhuber J (2003) Letter to the editor: nuclear DNA content and genome size of trout and human. Cytometry 51A(2):127–128

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Eenick AH (1973) Matromorphy in Brassica oleracea L. I. Terminology, parthenogenesis in Cruciferae and the formation and usability of matromorphic plants. Euphytica 23:429–433

    Article  Google Scholar 

  • Eenick AH (1974) Matromorphy in Brassica oleracea L. V. Studies on the quantitative characters of matromorphic plants and their progeny. Euphytica 23:725–736

    Article  Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics. Longman, Harlow, UK

    Google Scholar 

  • Faure J-E, Rotman N, Fortune P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30(4):481–488

    Article  PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Seattle: Department of Genetics, University of Washington

    Google Scholar 

  • Finnegan EJ (2001) Epialleles – a source of random variation in times of stress. Curr Opin Plant Biol 5:101–106

    Article  Google Scholar 

  • Fletcher JD, Lister RA, Bulman SR, Heenan PB (2010) First record of Turnip mosaic virus in Pachycladon spp. (Brassicaceae): an endangered native plant species in New Zealand. Aust Plant Dis Notes 5:9–10

    Article  Google Scholar 

  • Fullwood MJ, Wei CL, Liu ET, Ruan YJ (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    Article  CAS  PubMed  Google Scholar 

  • Garnock-Jones PJ (1991) Gender dimorphism in Cheesemania wallii (Brassicaceae). NZ J Bot 29:87–90

    Google Scholar 

  • Guidon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139

    Article  Google Scholar 

  • Hargreaves CL, Smith DR, Foggo MN, Gordon ME (1997) Conservation and recovery of Cheesemania “Chalk Range” an endangered New Zealand Brassicaceous plant. Comb Proc Int Plant Propagators Soc 47:132–136

    Google Scholar 

  • Heenan PB (1999) Artificial intergeneric hybrids between the New Zealand endemic Ischnocarpus and Pachycladon (Brassicaceae). NZ J Bot 37:595–601

    Article  Google Scholar 

  • Heenan PB (2009) A new species of Pachycladon (Brassicaceae) from limestone in eastern Marlborough, New Zealand. NZ J Bot 47:155–161

    Article  Google Scholar 

  • Heenan PB, Garnock-Jones PJ (1999) A new species combination in Cheesemania (Brassicaceae) from New Zealand. NZ J Bot 37:235–241

    Article  Google Scholar 

  • Heenan PB, Mitchell AD (2003) Phylogeny, biogeography, and adaptive radiation of Pachycladon (Brassicaceae) in the mountains of South Island, New Zealand. J Biogeogr 30:1737–1749

    Article  Google Scholar 

  • Heenan PB, Mitchell AD, Koch M (2002) Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: generic circumscription and relationships to Arabidopsis s. l. and Arabis s. l. NZ J Bot 40:543–562

    Article  Google Scholar 

  • Heenan PB, Dawson MI, Smissen RD, Bicknell RA (2008) An artificial intergeneric hybrid derived from sexual hybridization between the distantly related Arabidopsis thaliana and Pachycladon cheesemanii (Brassicaceae). Bot J Linn Soc 157:533–544

    Article  Google Scholar 

  • Hooker JD (1867) Handbook of the New Zealand flora. Reeve, London, UK

    Google Scholar 

  • Huson and Bryant (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–276

    Google Scholar 

  • Jackson S, Rounsley S, Purugganan M (2006) Commentary: comparative sequencing of plant genomes: choices to make. Plant Cell 18:1100–1104

    Article  CAS  PubMed  Google Scholar 

  • Joly S, Heenan PB, Lockhart PJ (2009) A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Mol Phylogenet Evol 51:365–372

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2003) What happens to genes in duplicated genomes. Proc Natl Acad Sci USA 100:4369–4371

    Google Scholar 

  • Kianin SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    Article  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of three diploid species: Capsella rubella, Arabidopsis lyrata ssp. petraea and Arabidopsis thaliana. Am J Bot 95:761–767

    Article  Google Scholar 

  • Koch M, Mummenhoff K, Hurka H (1999) Molecular phylogenetics of Cochlearia L. and allied genera based on nuclear ribosomal ITS DNA sequence analysis contradict traditional concepts of their evolutionary relationships. Plant Syst Evol 216:207–230

    Article  CAS  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear CHS sequences. Am J Bot 88:534–544

    Article  CAS  PubMed  Google Scholar 

  • Kowalski SP, Lan T-H, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    CAS  PubMed  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppala J, Koch M, Mitchell-Olds T, Langley C, Savolainen O (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and Arabidipsis thaliana. Genetics 168:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia in herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Bicknell RA, Heenan PB (2003) Embryology of two threatened species of Pachycladon (Brassicaceae). NZ J Bot 41:171–178

    Article  Google Scholar 

  • Lynch M, Conery SJ (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Lester C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Genome Res 15:516–525

    Article  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Nat Acad Sci USA 13:5224–5229

    Article  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassicaceae species varying in chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  CAS  PubMed  Google Scholar 

  • Mandakova T, Joly S, Krywinski M, Mummenhoff K, Lysak M (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476

    Article  Google Scholar 

  • McBreen K, Heenan PB (2006) Phylogenetic relationships of Pachycladon (Brassicaceae) species based on three nuclear and two chloroplast DNA markers. NZ J Bot 44:377–386

    Article  Google Scholar 

  • McGlone MS, Duncan RP, Heenan PB (2001) Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. J Biogeogr 28:199–216

    Article  Google Scholar 

  • McClintock B (1984) The significance of the responses of the genome challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Miller AL, Duncan RP (2004) The impact of exotic weed competition on a rare New Zealand outcrop herb, Pachycladon cheesemanii (Brassicaceae). NZ J Ecol 28:113–124

    Google Scholar 

  • Mitchell AD, Heenan PB (2000) Systematic relationships of New Zealand endemic Brassicaceae inferred from rDNA sequence data. Syst Bot 25:98–105

    Article  Google Scholar 

  • Mitchell AD, Heenan PB (2002) Genetic variation within the Pachycladon (Brassicaceae) complex based on fluorescent AFLP data. J R Soc NZ 32:427–443

    Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Mummenhoff K, Franzke A, Koch M (1997) Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s.l. (Brassicaceae). Bot J Linn Soc 125:183–199

    Google Scholar 

  • Nasrallah ME, Yogeeswaran K, Snyder S, Nasrallah JB (2000) Arabidopsis species hybrids in the study of species differences and evolution of amphiploidy in plants. Plant Physiol 124:1605–1614

    Article  CAS  PubMed  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study of 195 species. Ann Bot 104(1):57–69

    Article  PubMed  Google Scholar 

  • Remington DL, Purugganan MD (2003) Candidate genes, quantitative trait loci, and functional trait evolution in plants. Int J Plant Sci 164:S7–S20

    Article  CAS  Google Scholar 

  • Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavanoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32

    Article  CAS  PubMed  Google Scholar 

  • Savidan YH (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Schmidt R (2000) Synteny: recent advances and future prospects. Curr Opin Plant Biol 2:97–102

    Article  Google Scholar 

  • Schranz ME, Dobe C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Article  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABCs of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schulz OE (1924) Cruciferae-Sisymbrieae. Das Pflanzenreich IV 105 (Heft 86):1–388

    Google Scholar 

  • Schulz OE (1936) Cruciferen. In: Engler A, Harms H (eds) Die Natürlichen Pflanzenfamilien 17b, 2nd edn. Leipzig, Engelmann, Germany, pp 227–658

    Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Google Scholar 

  • Shepard KA, Purugganan MD (2002) The genetics of plant morphological evolution. Curr Opin Plant Biol 5:49–55

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP vers. 3.1.1). Natural History Survey, Champaign, IL, USA

    Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Vers 4. Sinauer, Sunderland, MA, USA

    Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genome duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Voelckel C, Heenan PB, Janssen B, Reichelt M, Ford K, Hofmann R, Lockhart PJ (2008) Transcriptional and biochemical signatures of divergence in natural populations of two species of New Zealand alpine Pachycladon. Mol Ecol 17:4740–4753

    Article  CAS  PubMed  Google Scholar 

  • Voelckel C, Mirzaei M, Reichelt M, Luo Z, Pascovici D, Heenan PB, Schmidt S, Janssen Haynes PA, Lockhart PJ (2010) Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 10:151

    Google Scholar 

  • Wang J, Tian L, Lee H-S, Chen ZJ (2006) Non-additive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974

    Article  CAS  PubMed  Google Scholar 

  • Weinig C, Dorn LA, Kane NC, German ZM, Halldorsdottir SS, Ungerer MC, Toyonaga Y, Mackay TFC, Purugganan MD, Schmitt J (2003) Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana. Genetics 165:321–329

    CAS  PubMed  Google Scholar 

  • Wendel J (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswaran K (2005) Investigations on the adaptive evolution of genomes and genes in the Brassicaceae. PhD Dissertation, Cornell University, Ithaca NY, USA

    Google Scholar 

  • Yogeeswaran K, Frary A, York TL, Amenta AR, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We, the authors, gratefully acknowledge the contribution of Peter Lockhart (AWC, Massey University, NZ) for his guidance and leadership in the establishment and development of the Pachycladon molecular and genomic research program. We wish to thank Vaughan Symonds (Massey University, NZ), Sue Sherman-Broyles and June Nasrallah (Cornell University, USA), and Raazesh Sainudiin (University of Canterbury, NZ) for suggestions to improve the manuscript; Kerry Ford (Fig. 14.1f), John Hunt (Fig. 14.1e), and Ewen Cameron (Fig. 14.1d) for permission to use photographs; Caroline Miller for technical assistance (Landcare Research); the New Zealand Marsden Fund and the Alexander von Humboldt Foundation for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krithika Yogeeswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yogeeswaran, K., Voelckel, C., Joly, S., Heenan, P.B. (2011). Pachycladon. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_14

Download citation

Publish with us

Policies and ethics