Skip to main content

Abstract

The genus Linum is one in which there is a single agronomically important species, Linum usitatissimum. This species is important as an oil and a fiber crop and also shows some potential as a functional food. The genus is interesting in that it has a genome structure that appears somewhat different from that of most of the plant species previously characterized. It also shows genomic responses to the growth environment. The diversity resources appear reasonable but may represent the sampling of the same genetic material numerous times. New molecular tools will aid in the development of a germplasm collection that maintains a representation of the overall diversity while removing unnecessary duplicates. Little exotic germplasm has yet been included in the cultivated crop although potential for this does exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qsous S, Carpentier E, Klein-Eude D, Burel C, Mareck A, Dauchel H, Gomord V, Balange AP (2004) Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta 219:369–378

    Article  CAS  PubMed  Google Scholar 

  • Beard BH (1962) Genetic and cytogenetic investigations with Linum. The Flax Institute of the United States, Fargo, ND, USA, pp 3–6

    Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (1999) Oil seed cultivars developed from induced mutations and mutations altering fatty acid composition. Mutat Breed 11:1–38

    Google Scholar 

  • Chen Y, Hausner G, Kenaschuk E, Procunier D, Dribnenki P, Penner G (1998) Identification of microspore-derived plants in anther culture of flax (Linum usitatissimum L.) using molecular markers. Plant Cell Rep 18:44–48

    Article  CAS  Google Scholar 

  • Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet. doi 10.1007/s00122-009-1016-3

  • Comstock VE (1963) Linkage relationships in Flax. The Flax Institute of the United States, Fargo, ND, USA, pp 7–8

    Google Scholar 

  • Cullis CA (1981) DNA sequence organization in the flax genome. Biochim Biophys Acta 652:1–15

    CAS  PubMed  Google Scholar 

  • Diederichsen A (2007) Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet Resour Crop Evol 54:661–678

    Article  Google Scholar 

  • Diederichsen A, Fu Y-B (2008) Flax genetic diversity as the raw material for future success. http://www.saskflax.com/documents/presentations/06A_Diederichsen.pdf

  • Dong J-Z, McHughen A (1993) An improved procedure for the production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci 88:61–71

    Article  CAS  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Flora Europaea (1968) vol 2. LXXXVI. Linaceae. Cambridge University Press, Cambridge, UK, pp 206–211

    Google Scholar 

  • Fofana B, Duguid S, Cloutier S (2004) Cloning of fatty acid biosynthetic genes β-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (Linum usitatissimum L.) seeds, Plant Science 166:1487–1496

    Google Scholar 

  • Gorman MB, Cullis CA, Alldridge N (1992) Genetic linkage analysis of isozyme polymorphisms in flax. J Hered 84:73–80

    Google Scholar 

  • Green AG (1986) A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Can J Plant Sci 66:499–503

    Article  CAS  Google Scholar 

  • Green AG, Salisbury PA (1983) Inheritance of polyembryony in flax (Linum usitatissimum L.). Can J Genet Cytol 25:117–121

    Google Scholar 

  • Harris BD (1968) Chrmosome numbers and evolution of North American species of Linum. Am J Bot 55:1197–1204

    Article  Google Scholar 

  • Jain RK, Thompson RG, Taylor DC, MacKenzie SL, McHughen A, Rowland GG, Tenaschuk D, Coffey M (1999) Isolation and characterization of two promoters from linseed for genetic engineering. Crop Sci 39:1696–1701

    Article  CAS  Google Scholar 

  • Jhala J, Hall LM, Hall JC (2008) Potential hybridization of flax with weedy and wild relatives: an avenue for movement of engineered genes? Crop Sci 48:825–840

    Article  Google Scholar 

  • Jordan MC, McHughen A (1988) Glyphosate tolerant flax plants from Agrobacterium mediated gene-transfer. Plant Cell Rep 7:281–284

    Article  CAS  Google Scholar 

  • Kappert H (1933) Erbliche Polyembryonie bei Linum usitatissimum. Biol Zbl 53:276–307

    Google Scholar 

  • Knowles PF, Houston BR (1955) Inheritance of resistance to Fusarium wilt of flax in Dakota selection. Agron J 47:131–135

    Article  Google Scholar 

  • McDill J (2009) PhD Dissertation grant proposal, San Franciso State University. http://www.sbs.utexas.edu/simpsonlab/Joshua.html

  • McGregor WG (1937) Inheritance of quality and quantity of oil in flax in relation to other plant characters. Can J Res C 15:362–379

    Google Scholar 

  • McHughen A, Swartz M (1984) A tissue-culture derived salt-tolerant line of flax (Linum usitatissimum). J Plant Physiol 117:109–117

    Google Scholar 

  • McSheffrey S, McHughen A, Devine M (1992) Characterization of transgenic sulfonylurea resistant flax. Theor Appl Genet 84:480–486

    Article  CAS  Google Scholar 

  • Mittapalli O, Rowland G (2003) Inheritance of seed color in flax. Crop Sci 43:1945–1951

    Article  Google Scholar 

  • Muir AD, Westcott ND (2003) Flax: the genus Linum. Taylor and Francis, New York, USA

    Google Scholar 

  • Muravenko OV, Lemesh VA, Samatadze TE, Amosova AV, Grushetskaya ZE, Popov KV, Semenova OYu, Khotyuleva LV, Zelenin AV (2003) Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russ J Genet 39:414–421

    Article  CAS  Google Scholar 

  • Myers WM (1936) A correlated study of the inheritance of seed size and botanical characters in the flax cross Redwing × Ottawa770B. Agron J 28:623–635

    Article  Google Scholar 

  • Nichterlein K, Marquard R, Friedt W (1988) Breeding for modified fatty acid composition by induced mutations in linseed (Linum usitatissimum L.). Plant Breed 101:190–199

    Article  CAS  Google Scholar 

  • Ntiamoah C, Rowland GG (1997) Inheritance and characterization of two linolenic acid EMS induced McGregor mutant flax (Linum usitatissimum L.). Can J Plant Sci 77:353–358

    Google Scholar 

  • Ntiamoah C, Rowland GG, Taylor DC (1995) Inheritance of elevated palmitic acid in flax and its relationship to the low linolenic acid. Crop Sci 35:148–152

    Article  CAS  Google Scholar 

  • Pavalek M (1998) Analysis of the current state of international flax database. Nat Fibres Spl Ed 1998(2):36–44

    Google Scholar 

  • PreÅ¥ová A, Obert B, BartoÅ¡ová Z (2006) Haploid formation in maize, barley, flax, and potato. Protoplasma 228:107–114

    Article  Google Scholar 

  • Rakouský S, Tejklová E, Wiesner I, Wiesnerová D, Kocábek T, OndÅ™ej M (1999) Hygromycin B- an alternative in flax transformant selection. Biologia Plantarum, Bol 42:361–369

    Google Scholar 

  • Ray C Jr (1944) Cytological studies on the flax genus, Linum. Am J Bot 31:241–248

    Article  Google Scholar 

  • Rowland GG (1991) An EMS-induced low-linolenic-acid mutant in McGregor flax (Linum usitatissimum L.). Can J Plant Sci 71:93–396

    Google Scholar 

  • Rowland GG, Bhatty RS (1990) Ethyl methanesulphonate induced fatty acid mutations in flax. J Am Oil Chem Soc 67:213–214

    Article  CAS  Google Scholar 

  • Rowland GG, Wilen R (1998) New trends in linseed breeding. In: Proceedings of the bast fibrous plants today and tomorrow, St. Petersburg, 28–30 Sept 1998, NI Vavilov Research Institute of Plant Industry, St. Petersburg, Russia, pp 32–35

    Google Scholar 

  • Rowland GG, McHughen A, Mconie C (1988) Field-evaluation on nonsaline soils of a somaclonal variant of Mcgregor flax selected for salt tolerance in vitro. Can J Plant Sci 68:345–349

    Article  Google Scholar 

  • Rowland GG, McHughen A, Bhatty RS, Mackenzie SL, Taylor DC (1995) The application of chemical mutagenesis and biotechnology to the modification of linseed (Linum usitatissimum L). Euphytica 85:317–321

    Article  CAS  Google Scholar 

  • Rozhmina TA, Zhuchenko AA (1998) Study of National Russian flax collections of VNIIL. Nat Fibres Spl Ed 1998(2):50–56

    Google Scholar 

  • Rutkowska-Krause I, Mankowska G (2002) Haploidization and somaclonal variationin flax breeding programme. In: Proceedings of 59th Flax Institute, Fargo, North Dakota, USA, pp 179–191

    Google Scholar 

  • Saeidi G, Rowland GG (1997) The inheritance of variegated seed color and palmitic acid in flax. J Hered 88:466–468

    Google Scholar 

  • Saeidi G, Rowland GG (1999) Seed colour and linolenic acid effects on agronomic traits in flax. Can J Plant Sci 79:521–526

    CAS  Google Scholar 

  • Sharifnia F, Assadi M (2003) Seed protein analysis in relation to taxonomy of the Iranian Linum species. Iran J Bot 10:49–54

    Google Scholar 

  • Shaw FJK, Khan AR, Alam M (1931) Studies in Indian oilseeds. V The inheritance of characters in Indian linseed. Indian J Agric Sci 1:1–57

    Google Scholar 

  • Strange K, Rix M (2007) Linum doerfleri. Curtis’s Bot Mag 24:12–17

    Article  Google Scholar 

  • Tammes T (1922) Genetic analysis, schemes of cooperation and multiple allemorphs of Linum usitatissimum. J Genet 12:19–46

    Article  Google Scholar 

  • Tammes T (1928) The genetics of the genus Linum. Bibliogr Genet 4:1–36

    Google Scholar 

  • Tejklová E (2002) Curly stem – an induced mutation in flax (Linum usitatissimum L.). Czech J Genet Plant Breed 38:125–128

    Google Scholar 

  • Wróbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Cullis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cullis, C. (2011). Linum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_11

Download citation

Publish with us

Policies and ethics