Skip to main content

Abstract

Hirschfeldia Moench is a small genus under constant taxonomical discussion. Currently, all plants in the genus are regarded mostly as weeds of no economic importance or as plants with a potential use in phytoremediation. Intergeneric hybrids point to the possibility of introgression from Hirschfeldia incana into crop plants. Successful hybridizations with B. napus have been achieved using H. incana lines resistant to Leptosphaeria maculans. The hybrids showed resistance to L. maculans and have been successfully backcrossed to B. napus.

Furthermore, H. incana are described as pseudometallophytes due to the ability of the species to grow in highly contaminated soils. The potential usefulness of these traits for phytoremediation is under study, but the resistance to abiotic stress has yet to be analyzed genetically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali HBM, Lysak MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346

    Article  CAS  PubMed  Google Scholar 

  • Al-Shehbaz IA (1977) Protogyny in the Cruciferae. Syst Bot 2:327–333

    Article  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Andrews AC (1942) Alimentary use of hoary mustard in the classical period. Isis 34:161–162

    Article  Google Scholar 

  • Belkhiri A, Lockwood GB (1994) Investigation of ‘mustard oil’ glucosinolates in cell cultures of three species of Cruciferae. Flav Fragr J 9:1–6

    Article  CAS  Google Scholar 

  • Branca F (1995) Studies on some wild Brassicaceae species utilizable as vegetables in the Mediterranean areas. Plant Genet Resour Newsl 104:6–9

    Google Scholar 

  • Chadoeuf R, Darmency H, Maillet J, Renard M (1998) Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res 58:197–204

    Article  Google Scholar 

  • Chevre AM, Eber F, Kerlan MC, This P (1991) Cytogenetic and molecular markers for genome analysis of crucifers. CR Acad Agric Fran 77:59–67

    Google Scholar 

  • Chevre AM, Eber F, Renard M (1997) Transgenic rape and environmental hazards. Biofutur 172:44–48

    Article  Google Scholar 

  • Chevre A-M, Eber F, Baranger A, Vallee P, Pierre J, Renard M (1998) Impact of oilseed rape genetic transformation. Cahiers Agric 7:525–530

    Google Scholar 

  • Chevre AM, Eber F, Renard M, Darmency H (1999) Gene flow from oilseed rape to weeds. In: Gene flow and agriculture, Proceeding symposium, Keele, UK, 12–14 Apr 1999, pp 1125–1130

    Google Scholar 

  • Chevre AM, Eber F, Jenczewski E, Renard M, Pierre J, Darmency H, Reboud X (2001) Agro-environmental impact of the cultivation of herbicide tolerant genetically modified rapeseed varieties. CR Acad Agric Fran 87:11–20

    Google Scholar 

  • Chevre AM, Eber F, Jenczewski E, Darmency H, Renard M (2003) Gene flow from oilseed rape to weedy species. Acta Agric Scand B Soil Plant Sci 53:22–25

    Google Scholar 

  • Chronopoulos G, Theocharopoulos M, Christodoulakis D (2005) Phytosociological study of Hirschfeldia incana (L.) Lagraze-Fossat (Cruciferae) communities in mainland Greece. Acta Bot Croat 64:75–114

    Google Scholar 

  • Darmency H, Fleury A (2000) Mating system in Hirschfeldia incana and hybridization to oilseed rape. Weed Res 40:231–238

    Article  Google Scholar 

  • Devos Y, De Schrijver A, Reheul D (2009) Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. Environ Monit Assess 149:303–322

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Garcia E (1988) Spring and summer hosts for Pieris rapae in Southern Spain with special attention to Capparis spinosa. Entomol Exp Appl 48:173–178

    Google Scholar 

  • Fletcher JD (2001) New hosts of Alfalfa mosaic virus, Cucumber mosaic virus, Potato virus Y, Soybean dwarf virus, and, Tomato spotted wilt virus in New Zealand. NZ J Crop Hortic Sci 29:213–217

    Article  Google Scholar 

  • Gisbert C, Clemente R, Navarro-Avino J, Baixauli C, Giner A, Serrano R, Walker DJ, Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–27

    Article  CAS  Google Scholar 

  • Gisbert C, Almela C, Velez D, Lopez-Moya JR, de Haro A, Serrano R, Montoro R, Navarro-Avino J (2008) Identification of an accumulation plant species growing on highly contaminated soils. Int J Phytoremed 10:185–196

    Article  CAS  Google Scholar 

  • Gómez Campo C (1993) Hirschfeldia Moench. In: Castroviejo S, Aedo C, Gómez Campo C, Laínz M, Montserrat P, Morales R, Munoz Garmendia F, Nieto Feliner G, Rico E, Talavera S, Villar L (eds) Flora Iberica. 4: Cruciferae – Monotropaceae. Real Jardin Botánico, Madrid, Spain, pp 398–400

    Google Scholar 

  • Gómez-Campo C, Martinez Laborde J (1998) Taxonomic and nomenclatural adjustments in the tribe Brassiceae (Cruciferae). Anal Jard Bot Madrid 56:379–381

    Google Scholar 

  • Harberd DJ, McArthur ED (1972) Two partially fertile species hybrids in the Brassiceae. Heredity 28:253

    Article  Google Scholar 

  • Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies. Japan Science Society Press, Tokyo, Japan, pp 1965–1987

    Google Scholar 

  • Horovitz A, Beiles A (1980) Gynodioecy as a possible populational strategy for increasing reproductive output. Theor Appl Genet 57:11–15

    Google Scholar 

  • Kavak H, Katircioglu Z, Bukun B (2007) Hirschfeldia incana, a new host report for white blister caused by Albugo candida in Turkey. Aust Plant Dis Notes 2:149

    Article  Google Scholar 

  • Klewer A (2005) Ãœbertragung von Resistenzen gegen die Alternaria-Rapsschwärze aus verwandten Arten in Brassica napus L. PhD Thesis, Free University, Berlin, Germany

    Google Scholar 

  • Koch MA, Dobes C, Kiefer C, Schmickl R, Klimes L, Lysak MA (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Lee PLM, Patel RM, Conlan RS, Wainwright SJ, Hipkin CR (2004) Comparison of genetic diversities in native and alien populations of hoary mustard (Hirschfeldia incana). Int J Plant Sci 165:833–843

    Article  Google Scholar 

  • Lefol E, Danielou V, Darmency H, Boucher F, Maillet J, Renard M (1995) Gene dispersal from transgenic crops. I. Growth of interspecific hybrids between oilseed rape and the wild hoary mustard. J Appl Ecol 32:803–808

    Article  Google Scholar 

  • Lefol E, Fleury A, Darmency H (1996) Gene dispersal from transgenic crops. II. Hybridization between oilseed rape and the wild heavy mustard. Sex Plant Reprod 9:189–196

    Article  Google Scholar 

  • Luu DT, Hugues S, Passelegue E, Heizmann P (2001) Evidence for orthologous S-locus-related I genes in several genera of Brassicaceae. Mol Gen Genet 264:735–745

    Article  CAS  PubMed  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Valdes B, Oliva SR (2005) Thallium accumulation in floral structures of Hirschfeldia incana (L.) Lagreze-Fossat (Brassicaceae). Bull Environ Contamin Toxicol 74:1058–1064

    Article  CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    Article  CAS  PubMed  Google Scholar 

  • Minz G (1954) List of additional hosts of the root knot nematode Meloidygyne sp. Hassadeh 34:511

    Google Scholar 

  • Paz Al ED, Mendez Perez P, Jorda-Gutierrez C (1997) New hosts of potato Y potyvirus (PVY) identified in the Canary Islands. Plant Dis 81:1096

    Google Scholar 

  • Plümper B (1995) Somatische und sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf Brassica napus L. PhD Thesis, Free University, Berlin, Germany

    Google Scholar 

  • Poschenrieder C, Bech J, Llugany M, Pace A, Fenes E, Barcelo J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant Soil 230:247–256

    Article  CAS  Google Scholar 

  • Rio-Celestino Md, Font R, Moreno-Rojas R, Haro-Bailon A (2006) Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crops Prod 24:230–237

    Article  Google Scholar 

  • Roland G (1952) A study of two viruses of turnip: mosaic and yellows. Parasitica 8:97–111

    Google Scholar 

  • Salisbury PA (1987) Blackleg resistance in weedy crucifers. Cruciferae Newsl 12:90–91

    Google Scholar 

  • Sang JP, Salisbury PA (1987) Wild crucifer species and 4-hydroxyglucobrassicin. Cruciferae Newsl 12:113–114

    Google Scholar 

  • Scholze P, Hammer K (1998) Evaluation of resistance to Plasmodiophora brassicae, Alternaria and Phoma in Brassicaceae. Acta Hortic 459:363–369

    Google Scholar 

  • Shapiro AM (2006) Use of an exotic weed (Hirschfeldia incana) as an oviposition substrate of the high-Andean pierid Phulia nymphula. J Lepidopt Soc 60:100–101

    Google Scholar 

  • Siemens J (2002) Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech J Genet Plant Breed 38:155–157

    Google Scholar 

  • Sikka K, Sharma AK (1979) Chromosome evolution in certain genera of Brassiceae. Cytologia 44:467–478

    Google Scholar 

  • Snogerup S, Snogerup B (2002) Brassica L. In: Strid A, Tan K (eds) Flora Hellenica. Gantner, Ruggell, Germany, pp 280–286

    Google Scholar 

  • Tzakou O, Shammas G, Couladis M (1993) Sterol composition of Hirschfeldia incana. Fitoterapia 64:89

    CAS  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera subtribe Brassicinae Brassiceae chloroplast genome and cytodeme Congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferae, tribe Brassiceae). Can J Bot 71:906–918

    CAS  Google Scholar 

  • Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483

    Article  CAS  Google Scholar 

  • Wei W, Darmency H (2008) Gene flow hampered by low seed size of hybrids between oilseed rape and five wild relatives. Seed Sci Res 18:115–123

    Article  Google Scholar 

  • Wheeler AG, Hoebeke ER (1999) Rhopalus (Brachycarenus) tigrinus (Hemiptera: Rhopalidae): First western U.S. records of a Eurasian scentless plant bug. Entomol Newsl 110:92–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Siemens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siemens, J. (2011). Hirschfeldia. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_10

Download citation

Publish with us

Policies and ethics