Skip to main content

LACAIS: Learning Automata Based Cooperative Artificial Immune System for Function Optimization

  • Conference paper
Contemporary Computing (IC3 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 94))

Included in the following conference series:

Abstract

Artificial Immune System (AIS) is taken into account from evolutionary algorithms that have been inspired from defensive mechanism of complex natural immune system. For using this algorithm like other evolutionary algorithms, it should be regulated many parameters, which usually they confront researchers with difficulties. Also another weakness of AIS especially in multimodal problems is trapping in local minima. In basic method, mutation rate changes as only and most important factor results in convergence rate changes and falling in local optima. This paper presented two hybrid algorithm using learning automata to improve the performance of AIS. In the first algorithm entitled LA-AIS has been used one learning automata for tuning the hypermutation rate of AIS and also creating a balance between the process of global and local search. In the second algorithm entitled LA-CAIS has been used two learning automata for cooperative antibodies in the evolution process. Experimental results on several standard functions have shown that the two proposed method are superior to some AIS versions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, Y.J., Zhang, J.S., Zhang, G.Y.: A Dynamic Clustering based Differential Evolution Algorithm for Global Optimization. European Journal of Operational Research 183, 56–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  3. Hedar, A.R., Fulushima, M.: Tabu Search Directed by Direct Search Methods for Nonlinear Global Optimization. European Journal of Operational Research 170, 329–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fogel, D.B., Michalwicz, Z.: Evolutionary Computation 1 - Basic Algorithms and Operators. Institute of Physics (IoP) Publishing, Bristol (2000)

    MATH  Google Scholar 

  5. Herrera, F., Lozano, M., Molina, D.: Continuous Scatter Search: An Analysis of the Integration of Some Combination Methods and Improvement Strategies. European Journal of Operational Research 169(2), 450–476 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hedar, A., Fukushima, M.: Evolution Strategies Learned with Automatic Termination Criteria. In: SCIS&ISIS 2006, Tokyo, Japan (2006)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  8. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)

    Article  Google Scholar 

  10. Gong, M., Jiao, L., Zhang, X.: A Population-based Artificial Immune System for Numerical Optimization. Neurocomputing 72(1-3), 149–161 (2008)

    Article  Google Scholar 

  11. Bozorgzadeh, M.A., Rahimi, A., Shiry, S.: A Novel Approach for Global Optimization in High Dimensions. In: 12th Annual CSI Computer Conference of Iran, Tehran, Iran, pp. 1–8 (2007)

    Google Scholar 

  12. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design with Applications. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  13. Huyer, W., Neumaier, A.: SNOBFIT–Stable Noisy Optimization by Branch and Fit. ACM Transactions on Mathematical Software 35(2), 9 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hashemi, A.B., Meybodi, M.R.: A Note on the Learning Automata based Algorithms for Adaptive Parameter Selection in PSO. Journal of Applied Soft Computing (2010) (to appear)

    Google Scholar 

  15. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dasgupta, D.: Artificial Immune Systems and their Applications. Springer, New York (1998)

    Google Scholar 

  17. Meybodi, M.R., Beigy, H.: A Note on Learning Automata Based Schemes for Adaptation of BP Parameters. Journal of Neurocomputing 48(4), 957–974 (2002)

    Article  MATH  Google Scholar 

  18. Yongshou, D., Yuanyuan, L., Lei, W., Junling, W., Deling, Z.: Adaptive Immune-Genetic Algorithm for Global Optimization to Multivariable Function. Journal of Systems Engineering and Electronics 18(3), 655–660 (2007)

    Article  Google Scholar 

  19. Wang, X., Gao, X.Z., Ovaska, S.J.: Artificial Immune Optimization Methods and Applications - A Survey. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3415–3420. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  20. Campelo, F., Guimaraes, F.G., Igarashi, H.: Overview of Artificial Immune Systems for Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 937–951. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Sheybani, M., Meybodi, M.R.: PSO-LA: A New Model for Optimization. In: 12th Annual CSI Computer Conference of Iran, Tehran, Iran, pp. 1162–1169 (2007)

    Google Scholar 

  22. Meybodi, M.R., Kharazmi, M.R.: Application of Cellular Learning Automata to Image Processing. J. Aut. 14(56A), 1101–1126 (2004)

    Google Scholar 

  23. Cutello, V., Nicosia, G.: The Clonal Selection Principle for in Silico and in Vivo Computing. In: Recent Developments in Biologically Inspired Computing, pp. 104–146. Idea Group Publishing (2005)

    Google Scholar 

  24. Timmis, J., Edmonds, C., Kelsey, J.: Assessing the Performance of Two Immune Inspired Algorithms and a Hybrid Genetic Algorithm for Function Optimisation. In: IEEE Congress on Evolutionary Computation, Potland, Oregon, USA, vol. 1, pp. 1044–1051. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  25. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  26. Garrett, S.M.: Parameter-free, adaptive clonal selection. In: IEEE Congress on Evolutionary Computation, Potland, Oregon, USA, vol. 1, pp. 1052–1058 (2004)

    Google Scholar 

  27. Cutello, V., Nicosia, G., Pavone, M.: Real Coded Clonal Selection Algorithm for Unconstrained Global Numerical Optimization using a Hybrid Inversely Proportional Hypermutation Operator. In: 21st Annual ACM Symposium on Applied Computing, Dijon, France, pp. 950–954 (2006)

    Google Scholar 

  28. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall Inc., Englewood Cliffs (1989)

    Google Scholar 

  29. Khilwani, N., Prakash, A., Shankar, R., Tiwari, M.: Fast clonal algorithm. Engineering Applications of Artificial Intelligence 21(1), 106–128 (2008)

    Article  Google Scholar 

  30. De Castro, L.N., Von Zuben, F.J.: Recent developments in biologically inspired computing. Igi Global (2004)

    Google Scholar 

  31. Sheybani, M., Meybodi, M.R.: CLA-PSO: A New Model for Optimization. In: 15th Conference on Electrical Engineering, Volume on Computer, Telecommunication Research Center, Tehran, Iran (2007)

    Google Scholar 

  32. Abtahi, F., Meybodi, M.R., Ebadzadeh, M.M., Maani, R.: Learning Automata-Based Co-Evolutionary Genetic Algorithms for Function Optimization. In: IEEE 6th International Symposium on Intelligent Systems, Subotica, Serbia, pp. 1–5. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  33. Ebdali, F., Meybodi, M.R.: Adaptation of Ants colony Parameters Using Learning Automata. In: 10th Annual CSI Computer Conference of Iran, pp. 972–980 (2005)

    Google Scholar 

  34. Masoodifar, B., Meybodi, M.R., Hashemi, M.: Cooperative CLA-EC. In: 12th Annual CSI Computer Conference of Iran, pp. 558–559 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rezvanian, A., Meybodi, M.R. (2010). LACAIS: Learning Automata Based Cooperative Artificial Immune System for Function Optimization. In: Ranka, S., et al. Contemporary Computing. IC3 2010. Communications in Computer and Information Science, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14834-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14833-0

  • Online ISBN: 978-3-642-14834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics