Advertisement

A VLIW-Based Post Compilation Framework for Multimedia Embedded DSPs with Hardware Specific Optimizations

  • Meng-Hsuan Cheng
  • Kenn Slagter
  • Tai-Wen Lung
  • Yeh-Ching Chung
Conference paper
  • 544 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6083)

Abstract

In high performance and low power multimedia embedded system design, VLIW-based embedded DSPs compilers that exploit ILP have become popular and play an important role today. For this reason, we need optimizing embedded DSP compilers that can both generate capable and efficient code in terms of performance, power, size, and productivity. In this paper, we show a post-compilation framework that can further optimize programs that have already been compiled and optimized by another compiler, by using runtime information and exploiting hardware specific features of DSPs. Finally, we show in our simulation results, that even programs compiled at the best optimization level, can obtain significant improvement through the use of this framework.

Keywords

VLIW Compiler optimization DSP Compiler optimization Post optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Analog Devices, Inc. Website (1995), http://www.analog.com/en/
  2. 2.
    Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and Tools, 2nd edn. Addison-Wesley, Reading (2006)Google Scholar
  3. 3.
    Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-Performance Computing. ACM Computing Surveys (December 1994)Google Scholar
  4. 4.
    Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.W.: IMPACT: An architectural framework for multiple-instruction-issue processors. In: Proc. 18th. Int. Symp. Computer Architecutre (1996)Google Scholar
  5. 5.
    Falk, H.: Control Flow Optimization by Loop Nest Splitting at the Source Code Level, Research Report No 773 (October 2002)Google Scholar
  6. 6.
    Fisher, J.A., Faraboschi, P., Young, C.: Embedded Computing: a VLIW approach to architecture, compilers and tools. Morgan Kaufmann, San Francisco (2005)Google Scholar
  7. 7.
    Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient code-generator generator. ACM Letters on Programming Languages and Systems, 213–226Google Scholar
  8. 8.
    The GCC - the gnu compiler collection (1987), http://gcc.gnu.org/
  9. 9.
    Gyllenhaal, J.C., Hwu, W.M., Rau, B.R.: Hmdes version 2.0 specification, Univ., Illinois, Urbana, IL, Tech. Rep. IMPACT (1996)Google Scholar
  10. 10.
    The H.264/AVC JM Reference Software, The Image Processing HHI (2006), http://iphome.hhi.de/suehring/tml/
  11. 11.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture: A quantitative approach, 4th edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  12. 12.
    Kozyrakis, C.E., Patterson, D.A.: Scalable Vector Processors for Embedded Systems. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  13. 13.
    Marwedel, Goosens, G. (eds.): Code Generation for Embedded Processors. Kluwer, Norwell (1995)Google Scholar
  14. 14.
    Rajagopalan, S., Rajan, S.P., Malik, S., Rigo, S., Araujo, G., Takayama, K.: A Retargetable VLIW Compiler Framework for DSPs With Instruction-Level Parallelism. IEEE Transactions on CAD of IC and System 20(11) (November 2001)Google Scholar
  15. 15.
    Rajagopalan, S., Vachharajani, M., Malik, S.: Handling irregular ILP within conventional VLIW schedulers using artificial resource constraints. In: Proc. Int. Conf. Compilers, Architecture, and Sysnthesis for Embedded Systems, November 2000, pp. 157–164 (2000)Google Scholar
  16. 16.
    Padua, D.A., Wolfe, M.J.: Advanced Compiler Optimizations for Supercomputers. Communication of the ACM (December 1986)Google Scholar
  17. 17.
    Zhang, K., Zhang, T., Pande, S.: Binary Translation to Improve Energy Efficiency through Post-pass Register Re-allocation. In: Proceedings of the 4th ACM international conference on Embedded software (2004)Google Scholar
  18. 18.
    Zivojnovic, V., Velarde, J.M., Schläger, C., Meyer, H.: DSP-stone: A DSP-oriented benchmarking methodology. In: Proc. Int. Conf. Signal Processing Applications and Technology, October 1994, pp. 715–720 (1994)Google Scholar
  19. 19.
    Saghir, M.A.R., Chow, P., Lee, C.G.: Application-driven design of DSP architectures and compilers, Acoustics, Speech, and Signal Processing. In: ICASSP-94 (1994)Google Scholar
  20. 20.
    Kumar, R., Gupta, A., Pankaj, B.S., Ghosh, M., Chakrabarti, P.P.: Post-Compilation Optimization for Multiple Gains with Pattern Matching. ACM SIGPLAN Notices (2005)Google Scholar
  21. 21.
    Liao, S.S., Wang, P.H., Wang, H., Hoflehner, G., Lavery, D., Shen, J.P.: Post-Pass Binary Adaptation for Software-Based Speculative Precomputation. In: ACM PLDI’02 (June 2002)Google Scholar
  22. 22.
    Angiolini, F., Menichelli, F., Ferrero, A., Benini, L., Oliveri, M.: A Post-Compiler Approach to Scratchpad Mapping of Code. In: International Conference on Compilers, Architectures and Synthesis of Embedded Systems CASES 2004 (September 2004)Google Scholar
  23. 23.
    The Analog Devices, Visual DSP++, Website (1995), http://www.analog.com/en/
  24. 24.
    Suzuki, M., Fujinami, N., Fukuoka, T., Watanabe, T., Nakata, I.: SIMD Optimization in COINS Compiler Infrastructure. In: Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Meng-Hsuan Cheng
    • 1
  • Kenn Slagter
    • 1
  • Tai-Wen Lung
    • 1
  • Yeh-Ching Chung
    • 1
  1. 1.System Software Laboratory, Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan R.O.C

Personalised recommendations