Skip to main content

Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes

  • Chapter
  • First Online:
Carbon Nanotubes for Biomedical Applications

Part of the book series: Carbon Nanostructures ((CARBON))

  • 1660 Accesses

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is one of the most versatile and powerful analytical tools developed in the last century and have been proven to be a suitable means for the elucidation of structural properties as well as physico-chemical characteristics in chemistry and material sciences. In the first part of this chapter a review is given on the investigation of different types of carbon nanotube (CNT) structures and properties by solution-state NMR, solid state NMR and high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. (Nuclear) Magnetic resonance imaging (MRI) is one of the most powerful noninvasive diagnostic techniques used in clinical medicine for in vivo assessment of anatomy and biological functions. CNTs are unique materials that can be used as a platform for the synthesis of hybrid construct molecules capable of enabling multiple biomedical applications in vitro and in vivo as molecular transporters for drug delivery, and potential new therapeutics. In the second part of this chapter the potential use of CNTs as contrast-enhancing agent for MRI, in vitro, ex vivo and in vivo, is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberlin, A., Endo, M., Koyama, T.: High resolution electron microscope observations of grap hitized carbon fibers. Carbon 14(2), 133–135 (1976)

    Article  Google Scholar 

  2. Kroto, H.W., et al.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  Google Scholar 

  3. Iijima, S.: Helical microtubules of carbon nanotubes. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  4. Bethune, D.S., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    Article  Google Scholar 

  5. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Article  Google Scholar 

  6. Chen, X., et al.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)

    Article  Google Scholar 

  7. Tycko, R., et al.: Molecular orientational dynamics in solid C70: investigation by one- and two-dimensional magic angle spinning nuclear magnetic resonance. J. Chem. Phys. 99(10), 7554–7564 (1993)

    Article  Google Scholar 

  8. Tang, X.P., et al.: Electronic structures of single-walled carbon nanotubes determined by NMR. Science 288(5465), 492–494 (2000)

    Article  Google Scholar 

  9. Chen, Q., et al.: Identification of endohedral water in single-walled carbon nanotubes by 1H NMR. Nano Lett. 8(7), 1902–1905 (2008)

    Article  Google Scholar 

  10. Kitaygorodskiy, A., et al.: NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 127(20), 7517–7520 (2005)

    Article  Google Scholar 

  11. Yu, I.S., Lee, J., Lee, S.: NMR of hydrogen adsorbed on carbon nanotubes. Phys. B Condensed Matter 329, 421–422 (2003)

    Article  Google Scholar 

  12. Mao, S.H., Kleinhammes, A., Wu, Y.: NMR study of water adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 421(4–6), 513–517 (2006)

    Article  Google Scholar 

  13. Nelson, D.J., Rhoads, H., Brammer, C.: Characterizing covalently sidewall-functionalized SWNTs. J. Phys. Chem. C 111(48), 17872–17878 (2007)

    Article  Google Scholar 

  14. Holzinger, M., et al.: Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125(28), 8566–8580 (2003)

    Article  Google Scholar 

  15. Chen, J., et al.: Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124(31), 9034–9035 (2002)

    Article  Google Scholar 

  16. Ghosh, S., Ramanathan, K.V., Sood, A.K.: Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 65(5), 678–684 (2004)

    Article  Google Scholar 

  17. Tasis, D., et al.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)

    Article  Google Scholar 

  18. Pantarotto, D., et al.: Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125(20), 6160–6164 (2003)

    Article  Google Scholar 

  19. Marega, R., et al.: Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes. J. Am. Chem. Soc. 131(25), 9086–9093 (2009)

    Article  Google Scholar 

  20. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Article  Google Scholar 

  21. Loening, N.M., Keeler, J., Morris, G.A.: One-dimensional DOSY. J. Magn. Reson. 153(1), 103–112 (2001)

    Article  Google Scholar 

  22. JohnsonJr, C.S.: Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34(3–4), 203–256 (1999)

    Article  Google Scholar 

  23. Ju, S.Y., et al.: NMR study of organization of diacetylenic amine on single-wall carbon nanotubes. In: Abstracts of papers of the American Chemical Society, vol 229, p. 119-POLY (2005)

    Google Scholar 

  24. Goze Bac, C., et al.: 13C NMR investigation of carbon nanotubes and derivatives. Curr. Appl. Phys. 1(2–3), 149–155 (2001)

    Article  Google Scholar 

  25. Goze-Bac, C., et al.: Magnetic interactions in carbon nanostructures. Carbon 40(10), 1825–1842 (2002)

    Article  Google Scholar 

  26. Peng, H., et al.: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125(49), 15174–15182 (2003)

    Article  Google Scholar 

  27. Mehring, M.: Principles of High Resolution NMR in Solids. Springer, Berlin (1983)

    Book  Google Scholar 

  28. Schmidt-Rohr, K.a.S., H.W.: Multidimensional NMR and Polymers. Academic Press, New York (1994)

    Google Scholar 

  29. Steven, P.B., Lyndon, E.: Solid-state NMR. In: Gauglitz, G. (ed.) Handbook of Spectroscopy, pp. 269–326 (2005)

    Google Scholar 

  30. Hayashi, S., et al.: C-13 NMR studies of C-13-enriched single-wall carbon nanotubes synthesized by catalytic decomposition of methane. Carbon 41(15), 3047–3056 (2003)

    Article  Google Scholar 

  31. He, H.: 13C solid-state MAS NMR studies of the low temperature phase transition in fullerene C60. PCCP 2(2), 2651–2654 (2000)

    Article  Google Scholar 

  32. Latil, S., et al.: C-13 NMR chemical shift of single-wall carbon nanotubes. Phys. Rev. Lett. 86(14), 3160–3163 (2001)

    Article  Google Scholar 

  33. Perez-Cabero, M., et al.: C-13 MAS–NMR study of carbon nanotubes grown by catalytic decomposition of acetylene on Fe–silica catalysts. Carbon 43(12), 2631–2634 (2005)

    Article  Google Scholar 

  34. Alemany, L.B., et al.: Solid-state NMR analysis of fluorinated single-walled carbon nanotubes: assessing the extent of fluorination. Chem. Mater. 19(4), 735–744 (2007)

    Article  Google Scholar 

  35. Singer, P.M., et al.: NMR study of spin excitations in carbon nanotubes. Phys. Status Solid B Basic Solid State Phys. 243(13), 3111–3116 (2006)

    Article  Google Scholar 

  36. Pennington, C.H., Stenger, V.A.: Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Modern Phys. 68(3), 855 (1996)

    Article  Google Scholar 

  37. Knight, W.D.: Solid State Physics, vol. 2, p. 93. Academic Press, New York (1956)

    Google Scholar 

  38. Mintmire, J.W., White, C.T.: First-principles band structures of armchair nanotubes. Appl. Phys. A Mater. Sci. Process. 67(1), 65–69 (1998)

    Article  Google Scholar 

  39. Cynthia, J.J., Jameson, A.K., Sheila, M.C.: Temperature and density dependence of [sup 129]Xe chemical shift in xenon gas. J. Chem. Phys. 59(8), 4540–4546 (1973)

    Article  Google Scholar 

  40. Kneller, J.M., et al.: TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes. J. Am. Chem. Soc. 122(43), 10591–10597 (2000)

    Article  Google Scholar 

  41. Clewett, C.F.M., Pietrass, T.: Xe-129 and Xe-131 NMR of gas adsorption on single- and multi-walled carbon nanotubes. J. Phys. Chem. B 109(38), 17907–17912 (2005)

    Article  Google Scholar 

  42. Romanenko, K.V., et al.: Xe-129 NMR study of Xe adsorption on multiwall carbon nanotubes. Solid State Nucl. Magn. Reson. 28(2–4), 135–141 (2005)

    Article  Google Scholar 

  43. Vyalikh, A., et al.: A nanoscaled contactless thermometer for biological systems. Phys. Status Solid. B Basic Solid State Phys. 244(11), 4092–4096 (2007)

    Article  Google Scholar 

  44. Dujardin, E., et al.: Interstitial metallic residues in purified single shell carbon nanotubes. Solid State Commun. 114(10), 543–546 (2000)

    Article  Google Scholar 

  45. Piotto, M., et al.: Practical aspects of shimming a high resolution magic angle spinning probe. J. Magn. Reson. 173(1), 84–89 (2005)

    Article  Google Scholar 

  46. Sekhaneh, W., et al.: High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem. Phys. Lett. 428(1–3), 143–147 (2006)

    Article  Google Scholar 

  47. Marti, J., Gordillo, M.C.: Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119(23), 12540–12546 (2003)

    Article  Google Scholar 

  48. Kolesnikov, A.I., et al.: Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93(3), 1–035503 (2004)

    Article  Google Scholar 

  49. Barnaal, D.E., Lowe, I.J.: Experimental free-induction-decay shapes and theoretical second moments for hydrogen in hexagonal ice. J. Chem. Phys. 46, 4800–4809 (1966)

    Article  Google Scholar 

  50. Gogotsi, Y., et al.: In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett. 79(7), 1021–1023 (2001)

    Article  Google Scholar 

  51. Caravan, P.: Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc. Chem. Res. 42(7), 851–862 (2009)

    Article  Google Scholar 

  52. Caravan, P.: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35(6), 512–523 (2006)

    Article  Google Scholar 

  53. Jeff, W.M.B., Dara, L.K.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004)

    Article  Google Scholar 

  54. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394), 190–191 (1973)

    Article  Google Scholar 

  55. Gabillard, R.: A steady state transient technique in nuclear resonance. Phys. Rev. 85(4), 694 (1952)

    Article  Google Scholar 

  56. Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171(3976), 1151–1153 (1971)

    Article  Google Scholar 

  57. Hinshaw, W.S., Bottomley, P.A., Holland, G.N.: A demonstration of the resolution of NMR imaging in biological systems. Cell. Mol. Life Sci. 35(9), 1268–1269 (1979)

    Article  Google Scholar 

  58. Damadian, R., Goldsmith, M., Minkoff, L.: NMR in cancer: XVI. FONAR image of the live human body. Physiol. Chem. Phys. 9(1), 97–100, 108 (1977)

    Google Scholar 

  59. Kumar, A., Welti, D., Ernst, R.R.: NMR Fourier zeugmatography. J. Magn. Reson. 18(1), 69–83 (1975)

    Google Scholar 

  60. Wehrli, F.W.: On the 2003 Nobel Prize in medicine or physiology awarded to Paul C. Lauterbur and Sir Peter Mansfield. Magn. Reson. Med. 51(1), 1–3 (2004)

    Article  MathSciNet  Google Scholar 

  61. Mansfield, P.: Snapshot magnetic resonance imaging (Nobel Lecture). Angew. Chem. Int. Edn. 43(41), 5456–5464 (2004)

    Article  Google Scholar 

  62. Watson, A.D., J.K., Jamieson, G.C., Fellmann, J.D., Vogt, N.B.: Use of fullerenes in diagnostic and/or therapeutic agents, USA (1994)

    Google Scholar 

  63. Sitharaman, B., et al.: Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imaging 2(3), 139–146 (2007)

    Article  Google Scholar 

  64. Bolskar, R.D., et al.: First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo. Evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125(18), 5471–5478 (2003)

    Article  Google Scholar 

  65. Neumann, W.L., Cacheris, W.P. (eds): Fullerene compositions for magnetic resonance spectroscopy and imaging. US Patent 5,248,498, 1993

    Google Scholar 

  66. Haddon, R.C.: Carbon nanotubes. Acc. Chem. Res. 35(12), 997–997 (2002)

    Article  Google Scholar 

  67. Mackeyev, Y.A., et al.: Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 109(12), 5482–5484 (2005)

    Article  Google Scholar 

  68. Suenaga, K., et al.: Element-selective single atom imaging. Science 290(5500), 2280–2282 (2000)

    Article  Google Scholar 

  69. Sitharaman, B., et al.: Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31, 3915–3917 (2005)

    Article  Google Scholar 

  70. Hartman, K.B., et al.: Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8(2), 415–419 (2008)

    Article  Google Scholar 

  71. Al Faraj, A., et al.: In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 9(3), 1023–1027 (2009)

    Article  Google Scholar 

  72. Sosnovik, D.E., Weissleder, R.: Emerging concepts in molecular MRI. Curr. Opin. Biotechnol. 18(1), 4–10 (2007)

    Article  Google Scholar 

  73. Choi, J.H., et al.: Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7(4), 861–867 (2007)

    Article  Google Scholar 

  74. Richard, C., et al.: Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T 1 and T 2 MRI contrast agents. Nano Lett. 8(1), 232–236 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay K. Anuganti or Aldrik H. Velders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anuganti, V.K., Velders, A.H. (2011). Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_7

Download citation

Publish with us

Policies and ethics