Skip to main content

Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors

  • Chapter
  • First Online:
Carbon Nanotubes for Biomedical Applications

Abstract

We discuss the prospects of applying the magnetic properties of magnetically functionalised carbon nanotubes to biomedical applications. The primary applications are use as a contactless local heating agent, as a standalone thermoablation treatment or in concert with remotely released anti-cancer drugs. Targeted heat treatment is an effective cancer treatment, as tumour tissue has a reduced heat tolerance. To understand the heating process in an applied alternating current (AC) magnetic field the basics of the ferro- and superparamagnetic heating mechanisms are described and brought into context with the material properties. The performance of various materials is compared with respect to heat output, and prospect of additional functionalisation. The actual heating output in AC magnetic fields is studied and discussed in this chapter. Hall magnetometry and Magnetic Force Microscopy are employed to study the magnetic properties of individual nano-ferromagnets, e.g. magnetisation reversal behaviour and domain configuration. NMR studies show that a non-invasive temperature control by virtue of a carbon-wrapped nanoscaled thermometer is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless otherwise specified, we always use multiwalled carbon nanotubes (MWCNT) in our experiments.

References

  1. Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mat. 201, 413–419 (1999)

    Article  Google Scholar 

  2. Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldöfner, N., Scholz, R., Koch, M., Lein, M., Jung, K., Loening, S.A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 283, 64 (2005)

    Google Scholar 

  3. Matsuoka, F., Shinkai, M., Honda, H., Kubo, T., Sugita, T., Kobayashi, T.: Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn. Res. Technol. 2, 3 (2004)

    Article  Google Scholar 

  4. Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., Loening, S.A.: Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int. J. Hyperth. 23, 315–323 (2007)

    Article  Google Scholar 

  5. Dale, L.H.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482 (2005)

    Article  Google Scholar 

  6. Klingeler, R., Hampel, S., Büchner, B.: Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int. J. Hyperth. 24, 496–505 (2008)

    Article  Google Scholar 

  7. Hilder, T.A., Hill, J.M.: Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18, 275704–275712 (2007)

    Article  Google Scholar 

  8. Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.-P., Gennaro, R., Prato, M., Bianco, A.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358 (2005)

    Article  Google Scholar 

  9. Hampel, S., Kunze, D., Haase, D., Rauschenbach, M., Kraemer, K., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Buechner, B.: Carbon nanotubes filled with a chemotherapeutic agent—a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175–182 (2008)

    Article  Google Scholar 

  10. Leonhardt, A., Mönch, I., Meye, A., Hampel, S., Büchner, B.: Synthesis of ferromagnetic filled carbon nanotubes and their biomedical application. Adv. Sci. Technol. 49, S74–S78 (2006)

    Article  Google Scholar 

  11. Kent, A.D., von Molnar, S., Gider, S., Awschalom, D.D.: Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited)  J. Appl. Phys. 76, 6656 (1994)

    Article  Google Scholar 

  12. Gider, S., Shi, J., Awschalom, D., Hopkins, P., Campman, K., Gossard, A., Kent, A., von Molnar, S.: Imaging and magnetometry of switching in nanometer-scale iron particles. Appl. Phys. Lett. 69, 3269 (1996)

    Article  Google Scholar 

  13. Geim, A.K., Dubonos, S.V., Lok, J.G.S., Grigorieva, I.V., Maan, J.C., Hansen, L.T., Lindelof, P.E.: Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379 (1997)

    Article  Google Scholar 

  14. Li, Y., Xiong, P., von Molnar, S., Wirth, S., Ohno, Y., Ohno, H.: Hall magnetometry on a single iron nanoparticle. Appl. Phys. Lett. 80, 4644 (2002)

    Article  Google Scholar 

  15. Stoner, E.C., Wohlfarth, E.P.: A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 599 (1948)

    MATH  Google Scholar 

  16. Aharoni, A.: Magnetization Curling. Phys. Status Solidi 16, 3 (1966)

    Article  Google Scholar 

  17. Sellmyer, D.J., Zheng, M., Skomski, R.: Magnetism of Fe, Co and Ni nanowires in selfassembled arrays. J. Phys. Condens. Matter 13, R433 (2001)

    Article  Google Scholar 

  18. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15, R841 (2003)

    Article  Google Scholar 

  19. Meier, J., Doudin, B., Ansermet, J.: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010 (1996)

    Article  Google Scholar 

  20. Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., Sellmyer, D.J.: Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B. 65, 134426 (2002)

    Article  Google Scholar 

  21. Martin, Y., Wickramasinghe, K.: Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)

    Article  Google Scholar 

  22. Göddenhenrich, T., Hartmann, U., Anders, M., Heiden, C.: Investigation of Bloch wall fine structures by magnetic force microscopy. J. Microsc. 152, 527–536 (1988)

    Article  Google Scholar 

  23. Gomez, R.D., Luu, T.V., Pak, A.O., Kirk, K.J., Chapman, J.N.:Domain configurations of nanostructured Permalloy elements. J. Appl. Phys. 85, 6163 (1999)

    Article  Google Scholar 

  24. O’Barr, R., Schultz, S.: Switching field studies of individual single domain Ni columns. J. Appl. Phys. 81, 5458 (1997)

    Article  Google Scholar 

  25. Moser, A., et al.: Observation of Single Vortices Condensed into a Vortex-Glass Phase by Magnetic Force Microscopy. Phys. Rev. Lett. 74, 1847 (1995)

    Article  Google Scholar 

  26. Müller, C., Elefant, D., Leonhardt, A., Büchner, B.: Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays. J. Appl. Phys. 103, 034302 (2008)

    Article  Google Scholar 

  27. Lutz, M.U., Weissker, U., Wolny, F., Müller, C., Löffler, M., Mühl, T., Leonhardt, A., Büchner, B., Klingeler, R.: Magnetic properties of α-Fe and Fe3C nanowires. JPCS 200, 072062 (2010)

    Google Scholar 

  28. Peigney, A., Laurent, C., Dobigeon, F., Rousset, A.: Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res. 12, 613 (1997)

    Article  Google Scholar 

  29. Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471 (1996)

    Article  Google Scholar 

  30. Hafner, J., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 (1998)

    Article  Google Scholar 

  31. Nagaraju, N., Fonseca, A., Konya, Z., Nagy, J.B.: Alumina and silica supported metal catalysts for the production of carbonnanotubes. Mol. Catal. A. Chem. 181, 57 (2002)

    Article  Google Scholar 

  32. Lee, S.Y., Yamada, M., Miyake, M.: Synthesis of Carbon Nanotubes and Carbon Nanofilaments over Palladium Supported Catalysts. Sci. Technol. Adv. Mater. 6, 420 (2005)

    Article  Google Scholar 

  33. Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H.: Large Scale CVD Synthesis of Single- Walled Carbon Nanotubes. Phys. Chem. B 103, 6484 (1999)

    Article  Google Scholar 

  34. Mabudafhasi, M.L., Bodkin, R., Nicolaides, C.P., Liu, X.Y., Witcomb, M.J., Coville, N.J.: The ruthenium catalysed synthesis of carbon nanostructures. Carbon 40, 2737 (2002)

    Article  Google Scholar 

  35. Lipert, K., Kretzschmar, F., Ritschel, M., Leonhardt, A., Klingeler, R., Büchner, B.: Nonmagnetic carbon nanotubes. J. Appl. Phys. 105, 063906 (2009)

    Article  Google Scholar 

  36. Ritschel, M., Leonhardt, A., Elefant, D., Oswald, S., Büchner, B.: Rhenium-Catalyzed Growth Carbon Nanotubes. J. Phys. Chem. C 111, 8414 (2007)

    Article  Google Scholar 

  37. Heremans, J., Olk, C.H., Morelli, D.T.: Magnetic susceptibility of carbon structures. Phys. Rev. B 49, 15122 (1994)

    Article  Google Scholar 

  38. Tsui, F., Jin, L., Zhou, O.: Anisotropic magnetic susceptibility of multiwalled carbon nanotubes. Appl. Phys. Lett. 76, 1452 (2000)

    Article  Google Scholar 

  39. Byszewski, P., Baran, M.: Magnetic Susceptibility of Carbon Nanotubes. Europhys. Lett. 31, 363 (1995)

    Article  Google Scholar 

  40. Leonhardt, A., Ritschel, M., Elefant, D., Mattern, N., Biedermann, K., Hampel, S., Müller, Ch., Gemming, T., Büchner, B.: Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J. Appl. Phys. 98, 074315 (2005)

    Article  Google Scholar 

  41. Skomski, R.: J. Phys. Condens. Matter 15, 841 (2003)

    Article  Google Scholar 

  42. Hütten, A., Sudfeld, D., Ennena, I., Reiss, G., Wojczykowski, K., Jutzi, P.: Ferromagnetic FeCo nanoparticles for biotechnology. J. Magn. Magn. Mater. 293, 93 (2003)

    Article  Google Scholar 

  43. Neel, L.: Compt. Rend. (Paris) 224, 1488 (1947)

    Google Scholar 

  44. O’Handley, R.C.: Modern magnetic materials. John Wiley and Sons, New York (2000)

    Google Scholar 

  45. Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258 (1992)

    Article  Google Scholar 

  46. Kersten, M.: Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilität. Z. Phys. 44, 63 (1943)

    Google Scholar 

  47. Hampel, S., Leonhardt, A., Selbmann, D., Biedermann, K., Elefant, D., Mueller, C., Gemming, T., Buechner, B.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44, 2316 (2006)

    Article  Google Scholar 

  48. Krupskaya, Y., Mahn, C., Parameswaran, A., Taylor, A., Krämer, K., Hampel, S., Leonhardt, A., Ritschel, M., Büchner, B., Klingeler, R.: Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. JMMM 321(24), 4067–4071 (2009)

    Article  Google Scholar 

  49. Heister, E., Neves, V., Tîlmaciu, C., Lipert, K., Sanz Beltrán, V., Coley, H., Silva, S.R.P., McFadden, J.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9), 2152–2160 (2009)

    Article  Google Scholar 

  50. Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S., Richterd, U.: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 270, 345–357 (2004)

    Article  Google Scholar 

  51. Rosensweig, R.E., Magn, J.: Heating magnetic fluid with alternating magnetic field. Magn. Mater. 252, 370–374 (2002)

    Article  Google Scholar 

  52. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)

    Article  Google Scholar 

  53. Farle, M.: Magnetism goes nano, C4, Forschungszentrum Juelich (2005)

    Google Scholar 

  54. Kumar, C.S.S.R.: Nanomaterials for cancer therapy. Wiley-VCH, pp 291–296 (2006)

    Google Scholar 

  55. Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)

    Article  Google Scholar 

  56. Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine 3(3), 321–327 (2008)

    Article  Google Scholar 

  57. Haase, D., Hampel, S., Leonhardt, A., Thomas, J., Mattern, N., Büchner, B.: Facile onestep- synthesis of carbon wrapped copper nanowires by thermal decomposition of Copper(II)– acetylacetonate. Surf. Coat. Technol. 201, 9184–9188 (2007)

    Article  Google Scholar 

  58. Weissker, U., Löffler, M., Wolny, F., Lutz, M.U., Scheerbaum, N., Klingeler, R., Gemming, T., Mühl, T., Leonhardt, A., Büchner, B.: Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J. Appl. Phys. 106, 054909 (2009)

    Article  Google Scholar 

  59. Grimault, S., Lucas, T., Quellec, S., Mariette, F.: Quantitative measurement of temperature by proton resonance frequency shift at low field: a general method to correct non-linear spatial and temporal phase deformations. J. Magn. Res. 170, 79–87 (2004)

    Article  Google Scholar 

  60. Ye, X., Ruan, R., Chen, P., Chang, K., Ning, K., Taub, I., Doona, C.: Accurate and fast temperature mapping during ohmic heating using proton resonance frequency shift MRI thermometry. J. Food. Eng. 59, 143–150 (2003)

    Article  Google Scholar 

  61. Kahn, T., Harth, T., Kiwit, J.C.W., Schwarzmaier, H.J., Wald, C., Mödder, U.: In vivo MRI thermometry using a phase-sensitive sequence: preliminary experience during MRI-guided laser-induced interstitial thermotherapy of brain tumors. J. Magn. Reson. Imaging 8, 160–164 (1998)

    Article  Google Scholar 

  62. Smith, N.B., Merrilees, N.K., Hynynen, K., Dahleh, M.: Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease. Int. J. Hyperth. 17, 271–282 (2001)

    Article  Google Scholar 

  63. Popescu, V.: Senzori de temperatură pe bază de filme de PbS nanostructurate. Rev. Chim. 55, 983–985 (2004)

    Google Scholar 

  64. Tan, C.M., Jia, J., Yu, W.: Temperature dependence of the field emission of multiwalled carbon nanotubes. Appl. Phys. Lett. 86, 263104 (2005)

    Article  Google Scholar 

  65. Murphy, C.J.: Nanocubes and nanoboxes. Science 298, 2139–2141 (2006)

    Article  Google Scholar 

  66. Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)

    Article  Google Scholar 

  67. Klostranec, J.M., Chan, W.C.W.: Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 18, 1953–1964 (2006)

    Article  Google Scholar 

  68. Narberhauser, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)

    Article  Google Scholar 

  69. Lee, J., Govoroy, A.O., Kotov, N.A.: Nanoparticle assemblies with molecular springs: nanoscale thermometer. Angew. Chem. Inter. Ed. 117, 7605–7608 (2005)

    Article  Google Scholar 

  70. Gao, Y., Bando, Y., Liu, Z., Golberg, D., Nakanishi, H.: Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915 (2003)

    Article  Google Scholar 

  71. Vyalikh, A., Wolter, A.U.B., Hampel, S., Haase, D., Ritschel, M., Leonhardt, A., Grafe, H.-J., Taylor, A., Krämer, K., Büchner, B., Klingeler, R.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environment. Nanomedicine 3, 321–327 (2008)

    Article  Google Scholar 

  72. Becker, K.D.: Temperature dependence of NMR chemical shifts in cuprous halides. J. Chem. Phys. 68, 3785–3793 (1978)

    Article  Google Scholar 

  73. Wolter, A.U.B., Klingeler, R., Büchner, B.: Thermometry on the nanometre-scale for biomedical applications using NMR spectroscopy. J. Biomed. Nanosci. Nanotechnol. (2010) (in print)

    Google Scholar 

  74. Abragam, A. (ed.): Principles of Nuclear Magnetism. Oxford University Press (1961)

    Google Scholar 

  75. Andrew, E.R., Hinshaw, W.S., Tiffen, R.S.: Nuclear spin–lattice relaxation in solid cuprous halides. J. Phys. C Solid. State. Phys. 6, 2217–2222 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Europeon Community through the Marie Curie Research Training Network CARBIO under contract No. MRTN-CT-289 2006-035616 and by the DFG via WO 1532/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias U. Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lutz, M.U. et al. (2011). Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_6

Download citation

Publish with us

Policies and ethics