Skip to main content

Magnetic Nanoparticles for Diagnosis and Medical Therapy

  • Chapter
  • First Online:
Carbon Nanotubes for Biomedical Applications

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Magnetic nanoparticles (MNPs) reveal promising opportunities for biomedical applications, potentially allowing minimally invasive diagnosis and therapeutic usage at several levels of human body organization (cells, tissue and organs). An increasingly broad collection of MNPs has been recently developed not only at the research level but also in some specific cases for medical applications. Superparamagnetic iron oxide (SPIO) nanoparticles are commonly used in clinical practice as contrast agents for magnetic resonance imaging (MRI) of liver and angiography. Carbon nanotubes (CNTs) are another type of nanomaterials with great potential for biomedical applications. Filled with ferromagnetic materials, an ensemble of aligned CNTs displays a highly non-linear, anisotropic and hysteretic magnetization behaviour due to their extremely high aspect ratio (length/diameter >100). The intrinsic properties of such ferromagnetic nanoparticles can potentially improve diagnosis and therapy of numerous diseases. Combining tailored biocompatible ferromagnetic nanomaterials with dedicated detection technology can provide a new approach leading to the exciting perspective of accurate medical imaging and medical therapy (magnetic hyperthermia, targeted drug delivery, etc.) at the cellular level. Elongated Fe-filled CNTs (Fe-CNTs) are foreseen as potential nanotools leading to minimally invasive, highly sensitive, and cost effective novel investigation routes for complete human body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjornerud, A., Johansson, L.: The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed. 17(7), 465–477 (2004)

    Article  Google Scholar 

  2. Enpuku, K., et al.: Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Jpn. J. Appl. Phys. 38(Part 2), 1102–1105 (1999)

    Article  Google Scholar 

  3. Reimer, P., Balzer, T.: Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties clinical development, and applications. Eur. Radiol. 13(6), 1266–1276 (2003)

    Article  Google Scholar 

  4. Bulte, J.W.M., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17(7), 484–499 (2004)

    Article  Google Scholar 

  5. Salvador-Morales, C.: Study of the interaction between immune system proteins and carbon nanotubes. DPhil Thesis, University of Oxford, Oxford (2006)

    Google Scholar 

  6. Reynolds, C.H., et al.: Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 122(37), 8940–8945 (2000)

    Article  Google Scholar 

  7. Berry, C.C., Curtis, A.S.G.: Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36(13), R198–R206 (2003)

    Article  Google Scholar 

  8. Lubbe, A.S., Alexiou, C., Bergemann, C.: Clinical applications of magnetic drug targeting. J. Surg. Res. 95(2), 200–206 (2001)

    Article  Google Scholar 

  9. Lubbe, A.S., et al.: Physiological aspects in magnetic drug-targeting. J. Magn. Magn. Mater. 194(1–3), 149–155 (1999)

    Article  Google Scholar 

  10. Lubbe, A.S., et al.: Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 56(20), 4694–4701 (1996)

    Google Scholar 

  11. Lubbe, A.S., et al.: Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56(20), 4686–4693 (1996)

    Google Scholar 

  12. Widder, K.J., Senyei, A.E.: Magnetic microspheres—a vehicle for selective targeting of drugs. Pharmacol. Ther. 20(3), 377–395 (1983)

    Article  Google Scholar 

  13. Crabtree, P.: Clinical trial fails; FeRx may close. In: The San Diego Union-Tribune. Union-Tribune Publishing Co., San Diego (2004)

    Google Scholar 

  14. Wilson, M.W., et al.: Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. Radiology 230(1), 287–293 (2004)

    Article  Google Scholar 

  15. Johnson, J., et al.: The MTC technology: a platform technology for the site-specific delivery of pharmaceutical agents. Eur. Cells Mater. 3, 12–15 (2002)

    Google Scholar 

  16. Pondman, K.M.: Investigation of rod-like nanoparticles as potential magnetic drug delivery carrier system. University of Twente (2010)

    Google Scholar 

  17. Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipient for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4(3), 183–200 (2008)

    Article  Google Scholar 

  18. Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 4(3), 173–182 (2008)

    Article  Google Scholar 

  19. Heister, E., et al.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9), 2152–2160 (2009)

    Article  Google Scholar 

  20. Lacerda, L., et al.: Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)

    Article  Google Scholar 

  21. Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)

    Article  Google Scholar 

  22. Dresselhaus, M.S., Dresselhaus, G., Jorio, A.: Unusual properties and structure of carbonnanotubes. Annu. Rev. Mater. Res. 34, 247–278 (2004)

    Article  Google Scholar 

  23. Flahaut, J.J., Gonzalez-Jimenez, F.: Preparation and characterization of a-Fe nanowires located inside double-walled carbon nanotubes. Chem. Phys. Lett. 457, 347–351 (2008)

    Article  Google Scholar 

  24. Grzelczak, M., et al.: Pt-catalyzed formation of Ni nanoshells on carbon nanotubes. Angew. Chem. Int. Ed. Engl. 46(37), 7026–7030 (2007)

    Article  Google Scholar 

  25. Salgueirino-Maceira, V., et al.: Magnetic properties of Ni/NiO nanowires deposited onto CNT/Pt nanocomposites. Adv. Funct. Mater. 18, 616–621 (2008)

    Article  Google Scholar 

  26. Leonhardt, A., et al.: Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem. Vapor Depos. 12(6), 380–387 (2006)

    Article  Google Scholar 

  27. Wolny, S., et al.: Abnormal growth in mitochondrial disease. Acta Paediatr. 98(3), 553–554 (2009)

    Article  Google Scholar 

  28. Vyalikh, A., et al.: A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine (Lond) 3(3), 321–327 (2008)

    Article  Google Scholar 

  29. Klingeler, R., Hampel, S., Buchner, B.: Carbon nanotube based biomedical agents for heating. temperature sensoring and drug delivery. Int. J. Hyperth. 24(6), 496–505 (2008)

    Article  Google Scholar 

  30. Samouhos, S., McKinley, G.: Carbon nanotube-magnetite composites. With applications to developing unique magnetorheological fluids. J. Fluids Eng. Trans. ASME 129(4), 429–437 (2007)

    Article  Google Scholar 

  31. Moench, I., Meye, A., Leonhardt, A.: Ferromagnetic filled carbon nanotubes as novel and potential containers for anticancer treatment strategies. In: Kumar, C.S.S.R. (ed.) Nanomaterials for Cancer Therapy, pp. 259–337. Wiley VCH Verlag, Weinheim (2006)

    Google Scholar 

  32. Kuipers et al.: Rev. Sci. Instrum. 79(1), 013901 (2008)

    Google Scholar 

  33. Hampel, S., et al.: Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 44(11), 2316–2322 (2006)

    Article  Google Scholar 

  34. Mönch, I., et al.: Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. J. Phys. 61, 820–824 (2007)

    Google Scholar 

  35. Dhont, J.K.G.: An Introduction to Dynamics of Colloids, Elsevier, Amsterdam p.211 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sobik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sobik, M., Pondman, K.M., Erné, B., Kuipers, B., Haken, B.t., Rogalla, H. (2011). Magnetic Nanoparticles for Diagnosis and Medical Therapy. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_5

Download citation

Publish with us

Policies and ethics