Skip to main content

Carbon Nanotubes in Regenerative Medicine

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

This chapter focuses on the latest developments in applications of carbonnanotubes (CNTs) for regenerative medicine. Regenerative Medicine focuses on technologies to create functional tissues to repair or replace tissues or organs lost due to trauma or disease. Carbon nonotubes (CNTs) have been under investigation in the past decade for an array of applications due to their unique and versatile properties. In the field of regenerative medicine, they have shown great promise to improve the properties of tissue engineering scaffolds. Drug delivery and imaging of engineering tissues. The chapter will review these latest advances

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abarrategi, A., Gutiérrez, M.C., Moreno-Vicente, C., Hortigüela, M.J., Ramos, V., López-Lacomba, J.L., et al.: Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1), 94–102 (2008)

    Article  Google Scholar 

  2. Adeli, M., Mirab, N., Alavidjeh, M.S., Sobhani, Z., Atyabi, F.: Carbon nanotubes-graft-polyglycerol: biocompatible hybrid materials for nanomedicine. Polymer 50(15), 3528–3536 (2009)

    Article  Google Scholar 

  3. Aoki, N., Yokoyama, A., Nodasaka, Y., Akasaka, T., Uo, M., Sato, Y., et al.: Cell culture on a carbon nanotube scaffold. J Biomed Nanotechnol 1(4), 402–405 (2005)

    Article  Google Scholar 

  4. Atala, A.: Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 7(1), 15–31 (2004)

    Article  Google Scholar 

  5. Baughman, R., Zakhidov, A., De Heer, W.: Carbon nanotubes—the route toward applications. Science 297(5582), 787 (2002)

    Article  Google Scholar 

  6. Cai, D., Mataraza, J., Qin, Z., Huang, Z., Huang, J., Chiles, T., et al.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2(6), 449–454 (2005)

    Article  Google Scholar 

  7. Caravan, P., Ellison, J., McMurry, T., Lauffer, R.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99, 2293–2352 (1999)

    Article  Google Scholar 

  8. Chao, T.-I., Xiang, S., Chen, C.-S., Chin, W.-C., Nelson, A.J., Wang, C., et al.: Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 384(4), 426–430 (2009)

    Article  Google Scholar 

  9. Cherukuri, P., Bachilo, S., Litovsky, S., Weisman, R.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)

    Article  Google Scholar 

  10. De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., et al.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9), 557 (2008)

    Article  Google Scholar 

  11. Dresselhaus M., Dresselhaus G., Saito R., Jorio A.: Raman spectroscopy of carbon nanotubes. In: Carbon Nanotubes: Quantum Cylinders of Graphene, Elsevier Publishers 3, 83–108 (2008)

    Google Scholar 

  12. Dyke, C., Tour, J.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51), 11151–11159 (2004)

    Article  Google Scholar 

  13. Gannon, C., Cherukuri, P., Yakobson, B., Cognet, L., Kanzius, J., Kittrell, C., et al.: Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)

    Article  Google Scholar 

  14. Gatti, A.: Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25(3), 385–392 (2004)

    Article  Google Scholar 

  15. Gatti, A., Rivasi, F.: Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23(11), 2381–2387 (2002)

    Article  Google Scholar 

  16. Greco, G.N. (ed.): Tissue Engineering Research Trends. Nova Science Publishers, New York (2008)

    Google Scholar 

  17. Green, D., Longtin, J., Sitharaman, B.: The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano 3(8), 2065–2072 (2009)

    Article  Google Scholar 

  18. Heller, D., Baik, S., Eurell, T., Strano, M.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17(23), 2793–2798 (2005)

    Article  Google Scholar 

  19. Hirata, E., Uo, M., Takita, H., Akasaka, T., Watari, F., Yokoyama, A.: Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes. J. Biomed. Mater. Res. Part B Appl. Biomater. 90B(2), 629–634 (2009)

    Article  Google Scholar 

  20. Hirsch, A., Vostrowsky, O.: Functionalization of carbon nanotubes. Top. Curr. Chem. 245, 193–238 (2005)

    Article  Google Scholar 

  21. Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)

    Article  Google Scholar 

  22. Kaiser, J., Wick, P., Manser, P., Spohn, P., Bruinink, A.: Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J. Mater. Sci. Mater. Med. 19(4), 1523–1527 (2008)

    Article  Google Scholar 

  23. Kam, N., Liu, Z., Dai, H.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–580 (2006)

    Article  Google Scholar 

  24. Kuzmany, H., Plank, W., Hulman, M., Kramberger, C., Grüneis, A., Pichler, T., et al.: Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B Condens. Matter Complex Syst. 22(3), 307–320 (2001)

    Article  Google Scholar 

  25. Leeuw, T., Reith, R., Simonette, R., Harden, M., Cherukuri, P., Tsyboulski, D., et al.: Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 7(9), 2650–2654 (2007)

    Article  Google Scholar 

  26. Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)

    Article  Google Scholar 

  27. Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Nat. Acad. Sci. 105(5), 1410 (2008)

    Article  Google Scholar 

  28. Mansfield, P.: Snapshot Magnetic Resonance Imaging. Angew. Chem. Int. Ed. 43, 5456–5464 (2004)

    Article  Google Scholar 

  29. McDevitt, M., Chattopadhyay, D., Kappel, B., Jaggi, J., Schiffman, S., Antczak, C., et al.: Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48(7), 1180 (2007)

    Article  Google Scholar 

  30. Meng, J., Kong, H., Han, Z., Wang, C., Zhu, G., Xie, S., et al.: Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J. Biomed. Mater. Res. Part A 88A(1), 105–116 (2009)

    Article  Google Scholar 

  31. Mistry, A., Mikos, A.: Tissue engineering strategies for bone regeneration. Adv. Biochem. Eng. Biotechnol. 94, 1–22 (2005)

    Google Scholar 

  32. O’Connell, M., Bachilo, S., Huffman, C., Moore, V., Strano, M., Haroz, E., et al.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581), 593 (2002)

    Article  Google Scholar 

  33. Ogawa, S., Lee, T., Kay, A., Tank, D.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Nat. Acad. Sci. 87(24), 9868–9872 (1990)

    Article  Google Scholar 

  34. Pramanik, M., Swierczewska, M., Green, D., Sitharaman, B., Wang, L.: Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 14, 034018 (2009)

    Article  Google Scholar 

  35. Richard, C., Doan, B., Beloeil, J., Bessodes, M., Toth, E., Scherman, D.: Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T1 and T2 MRI contrast agents. Nano Lett. 8(1), 232–236 (2008)

    Article  Google Scholar 

  36. Riggio, C., Ciofani, G., Raffa, V., Cuschieri, A., Micera, S.: Combination of polymer technology and carbon nanotube array for the development of an effective drug delivery system at cellular level. Nanoscale Res. Lett. 4(7), 668–673 (2009)

    Article  Google Scholar 

  37. Shi, X., Hudson, J.L., Spicer, P.P., Tour, J.M., Krishnamoorti, R., Mikos, A.G.: Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16, S531–S538 (2005)

    Article  Google Scholar 

  38. Shi, X., Sitharaman, B., Pham, Q., Liang, F., Wu, K., Edward Billups, W., et al.: Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28(28), 4078–4090 (2007)

    Article  Google Scholar 

  39. Shi, X., Sitharaman, B., Pham, Q.P., Spicer, P.P., Hudson, J.L., Wilson, L.J., et al.: In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J. Biomed. Mater. Res. Part A 86(3), 813–823 (2008)

    Article  Google Scholar 

  40. Sitharaman, B., Kissell, K., Hartman, K., Tran, L., Baikalov, A., Rusakova, I., et al.: Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 2005(31), 3915–3917 (2005)

    Article  Google Scholar 

  41. Sitharaman, B., Shi, X., Walboomers, X.F., Liao, H., Cuijpers, V., Wilson, L.J., et al.: In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2), 362–370 (2008)

    Article  Google Scholar 

  42. Sitharaman, B., Van Der Zande, M., Ananta, J., Shi, X., Veltien, A., Walboomers, X., et al.: Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites. J. Biomed. Mater. Res. Part A 93, 1454–1462 (2009)

    Google Scholar 

  43. Wang, S., Humphreys, E., Chung, S., Delduco, D., Lustig, S., Wang, H., et al.: Peptides with selective affinity for carbon nanotubes. Nat. Mater. 2(3), 196–200 (2003)

    Article  Google Scholar 

  44. Xu, M., Wang, L.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)

    Article  Google Scholar 

  45. Yildirim, E.D., Yin, X., Nair, K., Sun, W.: Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J. Biomed. Mater. Res. Part B Appl. Biomater. 87B(2), 406–414 (2008)

    Article  Google Scholar 

  46. Zavaleta, C., de La Zerda, A., Liu, Z., Keren, S., Cheng, Z., Schipper, M., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)

    Article  Google Scholar 

  47. Zhang, L., Webster, T.: Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1), 66–80 (2009)

    Article  Google Scholar 

  48. Zhang, Z., Yang, X., Zhang, Y., Zeng, B., Wang, S., Zhu, T., et al.: Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12(16), 4933 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Sitharaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paratala, B.S., Sitharaman, B. (2011). Carbon Nanotubes in Regenerative Medicine. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_2

Download citation

Publish with us

Policies and ethics