Skip to main content

Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment

  • Chapter
  • First Online:
Carbon Nanotubes for Biomedical Applications

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Approximately every fourth person in the world currently dies of cancer. Although many efficient anticancer drugs have been developed over the last 60 years or more, most therapeutic approaches still lack specificity for their intended site of action in the body, resulting in reduced effectiveness and severe side effects. The emerging field of nanomedicine provides a whole range of materials and techniques to develop customizable drug delivery vehicles that assist the targeting of therapeutic agents to the desired site of action. Amongst these, carbon nanotubes have emerged as promising candidates, being capable of penetrating mammalian cell membranes and allowing for the attachment of high loads of drugs and targeting agents on their surface or the inner cavity. This chapter will discuss the principles of targeted, anticancer chemotherapies and introduce carbon nanotubes as novel tools for vector-based, targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal, A., Siegel, R., Ward, E., et al.: Cancer statistics 2009. CA Cancer J. Clin. 59, 225–249 (2009)

    Article  Google Scholar 

  2. Kuper, H., Adami, H.O., Boffetta, P.: Tobacco use, cancer causation and public health impact. J. Intern. Med. 251(6), 455–466 (2002)

    Article  Google Scholar 

  3. Bourdes, V., Boffetta, P., Pisani, P.: Environmental exposure to asbestos and risk of pleural mesothelioma: review and meta-analysis—environmental exposure to asbestos and mesothelioma. Eur. J. Epidemiol. 16(5), 411–417 (2000)

    Article  Google Scholar 

  4. Rigel, D.S.: Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J. Am. Acad. Dermatol. 58(2), S129–S132 (2008)

    Article  Google Scholar 

  5. zur Hausen, H.: Viruses in human cancers. Science 254(5035), 1167–1173 (1991)

    Article  Google Scholar 

  6. Frank, T.S.: Hereditary cancer syndromes. Arch. Pathol. Lab. Med. 125(1), 85–90 (2001)

    Article  Google Scholar 

  7. Targeted Cancer Therapies. National Cancer Institute Fact Sheet 7.49 (2009)

    Google Scholar 

  8. Hait, W.N.: Targeted cancer therapeutics. Cancer Res. 69(4), 1263–1267 (2009)

    Article  Google Scholar 

  9. McCarron, P.A., Olwill, S.A., Marouf, W.M.Y., et al.: Antibody conjugates and therapeutic strategies. Mol. Interv. 5(6), 368–380 (2005)

    Article  Google Scholar 

  10. Byrne, J.D., Betancourt, T., Brannon-Peppas, L.: Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Del. Rev. 60(15), 1615–1626 (2008)

    Article  Google Scholar 

  11. Kirpotin, D.B., Drummond, D.C., Shao, Y., et al.: Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66(13), 6732–6740 (2006)

    Article  Google Scholar 

  12. Lee, L.S., Conover, C., Shi, C., et al.: Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: A comparison of conjugation chemistries and compounds. Bioconjug. Chem. 10(6), 973–981 (1999)

    Article  Google Scholar 

  13. Farokhzad, O.C., Cheng, J.J., Teply, B.A., et al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103(16), 6315–6320 (2006)

    Article  Google Scholar 

  14. Proske, D., Blank, M., Buhmann, R., et al.: Aptamers—basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol. 69(4), 367–374 (2005)

    Article  Google Scholar 

  15. Rusconi, C.P., Roberts, J.D., Pitoc, G.A., et al.: Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22(11), 1423–1428 (2004)

    Article  Google Scholar 

  16. Burmeister, P.E., Lewis, S.D., Silva, R.F., et al.: Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. 12(1), 25–33 (2005)

    Article  Google Scholar 

  17. Garanger, E., Boturyn, D., Dumy, P.: Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med. Chem. 7(5), 552–558 (2007)

    Article  Google Scholar 

  18. Meyer, A., Auernheimer, J., Modlinger, A., et al.: Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Curr. Pharm. Des. 12(22), 2723–2747 (2006)

    Article  Google Scholar 

  19. Ruoslahti, E.: Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83–90 (2002)

    Article  Google Scholar 

  20. Sudimack, J., Lee, R.J.: Targeted drug delivery via the folate receptor. Adv. Drug Del. Rev. 41(2), 147–162 (2000)

    Article  Google Scholar 

  21. Zhao, X., Li, H., Lee, R.J.: Targeted drug delivery via folate receptors. Expert Opin. Drug Deliv. 5(3), 309–319 (2008)

    Article  Google Scholar 

  22. Lu, Y., Sega, E., Leamon, C.P., et al.: Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 56(8), 1161–1176 (2004)

    Article  Google Scholar 

  23. Russell-Jones, G., McTavish, K., McEwan, J., et al.: Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 98(10), 1625–1633 (2004)

    Article  Google Scholar 

  24. Shmeeda, H., Mak, L., Tzemach, D., et al.: Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther. 5(4), 818–824 (2006)

    Article  Google Scholar 

  25. Wu, J., Liu, Q., Lee, R.J.: A folate receptor-targeted liposomal formulation for paclitaxel. Int. J. Pharm. 316(1–2), 148–153 (2006)

    Article  Google Scholar 

  26. Wu, A.M., Senter, P.D.: Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23(9), 1137–1146 (2005)

    Article  Google Scholar 

  27. Niculescu-Duvaz, I., Springer, C.J.: Antibody-directed enzyme prodrug therapy (ADEPT): a review. Adv. Drug Del. Rev. 26(2–3), 151–172 (1997)

    Article  Google Scholar 

  28. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005)

    Article  Google Scholar 

  29. Heister, E., Neves, V., Tîlmaciu, C., et al.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9), 2152–2160 (2009)

    Article  Google Scholar 

  30. Iyer, A.K., Khaled, G., Fang, J., et al.: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11(17–18), 812–818 (2006)

    Article  Google Scholar 

  31. Gottlieb, J.J., Washenik, K., Chachoua, A., et al.: Treatment of classic Kaposi’s sarcoma with liposomal encapsulated doxorubicin. Lancet 350(9088), 1363–1364 (1997)

    Article  Google Scholar 

  32. Tannock, I.F., Rotin, D.: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49(16), 4373–4384 (1989)

    Google Scholar 

  33. Ko, J., Park, K., Kim, Y.S., et al.: Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (beta-amino ester) block copolymer micelles for cancer therapy. J Control. Release 123(2), 109–115 (2007)

    Article  Google Scholar 

  34. Pantarotto, D., Briand, J.P., Prato, M., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004)

    Google Scholar 

  35. Kam, N.W.S., Jessop, T.C., Wender, P.A., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)

    Article  Google Scholar 

  36. Pantarotto, D., Singh, R., McCarthy, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Edn. 43(39), 5242–5246 (2004)

    Article  Google Scholar 

  37. Gao, L.Z., Nie, L., Wang, T.H., et al.: Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 7(2), 239–242 (2006)

    Article  Google Scholar 

  38. Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Edn. 45(4), 577–581 (2006)

    Article  Google Scholar 

  39. Chen, J., Chen, S., Zhao, X., et al.: Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 130(49), 16778–16785 (2008)

    Article  Google Scholar 

  40. Kam, N.W.S., Liu, Z., Dai, H.J.: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127(36), 12492–12493 (2005)

    Article  Google Scholar 

  41. Prabaharan, M., Grailer, J.J., Pilla, S., et al.: Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30), 6065–6075 (2009)

    Article  Google Scholar 

  42. Yudasaka, M., Ajima, K., Suenaga, K., et al.: Nano-extraction and nano-condensation for C-60 incorporation into single-wall carbon nanotubes in liquid phases. Chem. Phys. Lett. 380(1–2), 42–46 (2003)

    Article  Google Scholar 

  43. Leonhardt, A., Hampel, S., Muller, C., et al.: Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem. Vap. Deposition 12(6), 380–387 (2006)

    Article  Google Scholar 

  44. Gao, H.J., Kong, Y., Cui, D.X., et al.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3(4), 471–473 (2003)

    Article  Google Scholar 

  45. Kim, B.M., Qian, S., Bau, H.H.: Filling carbon nanotubes with particles. Nano Lett. 5(5), 873–878 (2005)

    Article  Google Scholar 

  46. Hilder, T.A., Hill, J.M.: Carbon nanotubes as drug delivery nanocapsules. Curr. Appl. Phys. 8(3–4), 258–261 (2008)

    Article  Google Scholar 

  47. Hilder, T.A., Hill, J.M.: Probability of encapsulation of paclitaxel and doxorubicin into carbon nanotubes. Micro Nano Lett. 3(2), 41–49 (2008)

    Article  Google Scholar 

  48. Wu, W., Wieckowski, S., Pastorin, G., et al.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44(39), 6358–6362 (2005)

    Article  Google Scholar 

  49. Ali-Boucetta, H., Al-Jamal, K.T., McCarthy, D., et al.: Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. (4), 459–461 (2008)

    Google Scholar 

  50. Feazell, R.P., Nakayama-Ratchford, N., Dai, H., et al.: Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129(27), 8438–8439 (2007)

    Article  Google Scholar 

  51. Liu, Z., Sun, X.M., Nakayama-Ratchford, N., et al.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)

    Article  Google Scholar 

  52. Dhar, S., Liu, Z., Thomale, J., et al.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130(34), 11467–11476 (2008)

    Article  Google Scholar 

  53. Hampel, S., Kunze, D., Haase, D., et al.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3(2), 175–182 (2008)

    Article  Google Scholar 

  54. Ou, Z.M., Wu, B.Y., Xing, D., et al.: Functional single-walled carbon nanotubes based on an integrin alpha(v)beta(3) monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology 20(10), 105102 (2009)

    Article  Google Scholar 

  55. Zhang, X.K., Meng, L.J., Lu, Q.G., et al.: Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30), 6041–6047 (2009)

    Article  Google Scholar 

  56. McDevitt, M.R., Chattopadhyay, D., Kappel, B.J., et al.: Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48(7), 1180–1189 (2007)

    Article  Google Scholar 

  57. Scott, S.D.: Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin’s lymphoma. Cancer Pract. 6(3), 195–197 (1998)

    Article  MathSciNet  Google Scholar 

  58. Liu, Z., Chen, K., Davis, C., et al.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68(16), 6652–6660 (2008)

    Article  Google Scholar 

  59. Villa, C.H., McDevitt, M.R., Escorcia, F.E., et al.: Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett. 8(12), 4221–4228 (2008)

    Article  Google Scholar 

  60. Bhirde, A.A., Patel, V., Gavard, J., et al.: Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307–316 (2009)

    Article  Google Scholar 

  61. Wu, W., Li, R.T., Bian, X.C., et al.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3(9):2740–2750 (2009)

    Article  Google Scholar 

  62. Zeineldin, R., Al-Haik, M., Hudson, L.G.: Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Lett. 9(2), 751–757 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Heister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heister, E., Neves, V., Silva, S.R.P., McFadden, J., Coley, H.M. (2011). Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment. In: Klingeler, R., Sim, R. (eds) Carbon Nanotubes for Biomedical Applications. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14802-6_12

Download citation

Publish with us

Policies and ethics