Skip to main content

Sediment Transport by Wind and Water: The Pioneering Work of Ralph Bagnold

  • Chapter
  • First Online:
Macro-engineering Seawater in Unique Environments

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1269 Accesses

Abstract

In 1978, at the age of 82, Brigadier Ralph Alger Bagnold was awarded the honorary degree of Doctor of Science by Aarhus University in Denmark. For the occasion, he gave a lecture, later published in Nordic Hydrology (Bagnold 1979), titled “Sediment Transport by Wind and Water.” In his introduction, Bagnold remarked, in his typically blunt style, that “it is doubtful whether modern textbooks of river and canal engineering convey any clearer understanding of the natural processes involved than was probably possessed by the great engineer Pharaohs of the 12th Dynasty 4,000 years ago, one at least of whose vast canals appears to have remained self-clearing for 1,500 years.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abulnaga BE, El-Sammany MS (2004) De-Silting Lake Nasser with slurry pipelines. In: Critical Transitions in Water and Environmental Resources Management. Proceedings of World Water and Environmental Resources Congress 2004. Proceedings of ASCE Conference, vol 138, pp 158–171. doi:10.1061/40737(2004)158

    Google Scholar 

  • Anderson RS, Hallet B (1986) Sediment transport by wind: toward a general model. Geol Soc Am Bull 97(5):523–535

    Article  Google Scholar 

  • Andreotti B, Fourrière A, Ould-Kaddourm F, Murray B, Claudin P (2009) Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457:1120–1123

    Article  CAS  Google Scholar 

  • Baas ACW (2007) Complex systems in Aeolian geomorphology. Geomorphology 91:311–331

    Article  Google Scholar 

  • Bagnold RA (1931) Journeys in the Libyan Desert, 1929 and 1930.Geogr J 78(1):13–39; (6):524–533

    Google Scholar 

  • Bagnold RA (1933) A further journey through the Libyan Desert. Geogr J 82(2):103–129; (3):211–213, 226–235

    Google Scholar 

  • Bagnold RA (1935a) Libyan sands: travel in a dead world. Hodder and Stoughton, London, reprinted Eland Publishing Ltd, London (2010)

    Google Scholar 

  • Bagnold RA (1935b) The movement of desert sand. Geogr J 85(4):342–365

    Article  Google Scholar 

  • Bagnold RA (1936) The movement of desert sand. Proc R Soc Lond A 157(892):594–620

    Article  Google Scholar 

  • Bagnold RA (1937) The size-grading of sand by wind. Proc R Soc Lond A 163(913):250–264

    Article  Google Scholar 

  • Bagnold RA (1938) The measurement of sand storms. Proc R Soc Lond A 167(929):282–290

    Article  Google Scholar 

  • Bagnold RA (1939) Committee on wave pressures: interim report on wave-pressure research. J Inst Civil Eng 12:201–226

    Google Scholar 

  • Bagnold RA (1940) Beach formation by waves: some model experiments in a wave tank. J Inst Civil Eng 5237:27–53

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London (reprinted 1954, 1960; 2005 Dover, Mineola, NY)

    Google Scholar 

  • Bagnold RA (1945) Early days of the Long Range Desert Group. Geogr J 105:30–46

    Article  Google Scholar 

  • Bagnold RA (1947) Sand movement by waves. J Inst Civil Eng 27:447–469

    Article  Google Scholar 

  • Bagnold RA (1955) Some flume experiments on large grains but a little denser than the transporting fluid, and their implications. Proc Inst Civil Eng 4(2):174–205

    Article  Google Scholar 

  • Bagnold RA (1956) The flow of cohesionless grains in fluids. Philos Trans R Soc Lond A 249(964):235–297

    Article  Google Scholar 

  • Bagnold RA (1962) Auto-Suspension of Transported Sediment; Turbidity Currents. Proc R Soc Lond A Math Phys Sci 265(1322):315–319

    Article  Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. U.S. Geological Survey Professional Paper 422-I

    Google Scholar 

  • Bagnold RA (1979) Sediment transport by wind and water. Nordic Hydrol 10:309–322

    Google Scholar 

  • Bagnold RA (1980) An empirical correlation of bed load transport rates in flumes and natural rivers. Proc R Soc Lond A 372:453–473

    Article  Google Scholar 

  • Bagnold RA (1983) The nature and correlation of random distributions. Proc R Soc Lond A 388(1795):273–291

    Article  Google Scholar 

  • Bagnold RA (1986) Transport of solids by natural water flow: evidence for a worldwide correlation. Proc R Soc Lond A Math Phys Sci 405(1829):369–374

    Google Scholar 

  • Bagnold RA (1990) Sand, wind, and war: memoirs of a desert explorer. University of Arizona Press, Tucson

    Google Scholar 

  • Bagnold RA, Barndorff-Nielsen OE (1980) The pattern of natural size distributions. Sedimentology 27(2):199–207

    Article  Google Scholar 

  • Ball P (2009) In retrospect: the physics of sand dunes. Nature 457:1084–1085

    Article  CAS  Google Scholar 

  • Barndorff-Nielsen OE, Blaesild P, Jensen JL, Sørensen M (1983) The fascination of sand. Research Report 93, Department of Theoretical Statistics, University of Aarhus

    Google Scholar 

  • Beadnell HJL (1910) The sand-dunes of the Libyan Desert: their origin, form, and rate of movement, considered in relation to the geological and meteorological conditions of the region. Geogr J 35(4):379–395

    Article  Google Scholar 

  • Bullard JE (2005) Arid geomorphology. Prog Phys Geogr 29(1):93–103

    Article  Google Scholar 

  • Bullard JE (2006) Arid geomorphology. Prog Phys Geogr 30(4):542–552

    Article  Google Scholar 

  • Bullard JE, Nash DJ, North CP (2007) Drylands: linking landscape processes to sedimentary environments. Geomorphology 85:1–128

    Google Scholar 

  • Cathcart RB (2006) Sethusamudram ship channel macroproject: anti-tsunami and storm surge textile arrestors protecting Palk Bay (India and Sri Lanka). Curr Sci 1474(91):11

    Google Scholar 

  • Chandramohan P, Jena BK, Sanil Kumar V (2001) Littoral drift sources and sinks along the Indian coast. Curr Sci 81(3):292–297

    Google Scholar 

  • Chudeau R (1909) Notes géologiques sur la Mauritanie (Geological notes on Mauritania). La Géographie 20(1):9–24 (in French)

    Google Scholar 

  • Chudeau R (1920) Étude sur les dunes sahariennes (Study on the Saharan dunes). Ann Geogr 29(161):334–351 (in French)

    Article  Google Scholar 

  • Cornelis WM, Gabriels D (2003) The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology 50:771–790

    Article  Google Scholar 

  • Cornish V (1897) On the formation of sand-dunes. Geogr J 9(3):278–309

    Article  Google Scholar 

  • Cornish V (1900) On desert sand-dunes bordering the Nile Delta. Geogr J 15(1):1–32

    Article  Google Scholar 

  • Cornish V (1914) Waves of sand and snow and the eddies which make them. T Fisher Unwin, London

    Google Scholar 

  • Doyle MW, Julian JP (2005) The most-cited works in geomorphology. Geomorphology 72:238–249

    Article  Google Scholar 

  • Ewing R, Kocurek G (2010) Aeolian dune-field pattern boundary conditions. Geomorphology 114:175–187

    Article  Google Scholar 

  • Field JP, Breshears DD, Whicker JJ (2009) Toward a more holistic perspective of soil erosion: why aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Res 1(1–2):9–17

    Article  Google Scholar 

  • Gilbert GK (1914) The transport of debris by running water. U.S. Geological Survey Professional Paper 86

    Google Scholar 

  • Goudie AS (1999) The history of desert dune studies over the last 100 years. In: Goudie AS, Livingstone I, Stokes S (eds) Aeolian environments, sediments and landforms. Wiley, Chichester, pp 1–13

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Groh C, Rehberg I, Kruelle CA (2009) Particle dynamics of a cartoon dune. Cornell University Library e-print arXiv:0911.0757v1

    Google Scholar 

  • Issawy B (ed) (1981) Annals of The Geological Survey of Egypt vol XI

    Google Scholar 

  • Jaeger HM, Nagel SR (1997) Dynamics of granular material. Am Sci 85:540–545

    Google Scholar 

  • Kennedy Shaw WB (1945) Long range desert group. Collins, London

    Google Scholar 

  • King WJH (1916) The nature and formation of sand ripples and dunes. Geogr J 47(3):189–209

    Article  Google Scholar 

  • King WJH (1918) Study of a dune belt. Geogr J 51(1):16–33

    Article  Google Scholar 

  • Kocurek G (2008) Boundary-condition controls on pattern development in aeolian and fluvial dune fields. In: Parsons D, Garland T, Best J (eds) Marine and river dune dynamics. Third MARID Workshop, pp 193–196

    Google Scholar 

  • Krumbein WC (1934) Size frequency distribution of sediments. J Sediment Petrol 4:65–77

    Google Scholar 

  • Lee JA, Zobeck TM (2009) Aeolian research. Aeolian Res 1:1–2

    Article  Google Scholar 

  • Leeder MR (1999) Sedimentology and sedimentary basins. Blackwell, Oxford

    Google Scholar 

  • Leopold LB (1979) Citation for the Sorby Medallist, Brigadier Ralph A. Bagnold. Sedimentology 26:157–160

    Article  Google Scholar 

  • Leopold LB, Bagnold RA, Wolman MG, Brush LM (1960) Flow resistance in sinuous or irregular channels. U.S. Geological Survey Miscellaneous Professional Paper 282-D, pp 111–134

    Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. WH Freeman and Co, San Francisco

    Google Scholar 

  • Livingstone I, Wiggs GFS, Weaver CM (2007) Geomorphology of desert sand dunes: a review of recent progress. Earth Sci Rev 80(3–4):239–257

    Article  Google Scholar 

  • McGee WJ (1908) Outlines of hydrology. Geol Soc Am Bull 19:199

    Google Scholar 

  • McKenna Neuman C (2003) Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound Layer Meteorol 108:61–89

    Article  Google Scholar 

  • Nash DJ, Bullard JE, North CP (2007) Drylands: linking landscape processes to sedimentary environments. Sediment Geology 195:1–100

    Google Scholar 

  • Parsons R, Walker IJ, Wiggs GFS (2004) Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Geomorphology 59:149–164

    Article  Google Scholar 

  • Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, London

    Book  Google Scholar 

  • Royer JR, Evans DJ, Oyarte L, Guo Q, Kapit E, Möbius ME, Waitukaitis SR, Jaeger HM (2009) High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459:1110–1113

    Article  CAS  Google Scholar 

  • Rubin DM (2006) Ripple effect: unforeseen applications of sand studies. Eos 87(30):293–297

    Article  Google Scholar 

  • Sagan C, Bagnold RA (1975) Fluid transport on Earth and aeolian transport on Mars. Icarus 26(2):209–218

    Article  Google Scholar 

  • Shaw R (2008) Environmental aspects of the Indian Ocean tsunami recovery. J Environ Manage 89(1):24–34

    Google Scholar 

  • Stout JE (2004) A method for establishing the critical threshold for aeolian transport in the field. Earth Surf Proc Land 29:1195–1207

    Article  Google Scholar 

  • Stout JE, Warren A, Gill TE (2009) Publication trends in aeolian research: an analysis of the Bibliography of Aeolian Research. Geomorphology 105(1–2):6–17

    Article  Google Scholar 

  • Thomas DSG, Wiggs GFS (2008) Aeolian system response to global change: challenges of scale, process and temporal integration. Earth Surf Proc Land 33(9):1396–1418

    Article  Google Scholar 

  • Thorne CR, MacArthur RC, Bradley JB (eds) (1988) The physics of sediment transport by wind and water: a collection of the hallmark papers by R.A. Bagnold. Book number 665, Hydraulics Division, American Society of Civil Engineers, New York

    Google Scholar 

  • Tooth S (2008) Arid geomorphology: recent progress from an Earth system science perspective. Prog Phys Geogr 32(1):81–101

    Article  Google Scholar 

  • Tooth S (2009) Arid geomorphology: emerging research themes and new frontiers. Prog Phys Geogr 33(2):251–287

    Article  Google Scholar 

  • Tsoar H (1994) Classics of physical geography revisited: Bagnold, R.A. 1941: the physics of blown sand and desert dunes. Prog Phys Geogr 18(1):91–96

    Article  Google Scholar 

  • Warren A (1986) Review: Greeley R and Iversen JD: Wind as a geological process on Earth, Mars, Venus and Titan. Prog Phys Geogr 10:312–313

    Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Werner BT (1995) Eolian dunes: computer simulations and attractor interpretation. Geology 23(12):1107–1110

    Article  Google Scholar 

  • Wiggs GFS (2001) Desert dune processes and dynamics. Prog Phys Geogr 25(1):53–79

    Google Scholar 

  • Yizhaq H (2008) Aeolian megaripples: mathematical model and numerical simulations. J Coastal Res 24(6):1369–1378

    Article  Google Scholar 

Download references

Acknowledgments

The writer is indebted to Stephen Bagnold for his help and permission to use quotations from his father’s works and the photograph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Welland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Welland, M. (2010). Sediment Transport by Wind and Water: The Pioneering Work of Ralph Bagnold. In: Badescu, V., Cathcart, R. (eds) Macro-engineering Seawater in Unique Environments. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14779-1_19

Download citation

Publish with us

Policies and ethics