The Role of Slope in Human Reorientation

  • Daniele Nardi
  • Nora S. Newcombe
  • Thomas F. Shipley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)


Studies of spatial representation generally focus on flat environments and visual stimuli. However, the world is not flat, and slopes are part of many natural environments. In a series of four experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of a square, featureless enclosure tilted at a 5° angle. Finding it required using the vestibular, kinesthetic and visual cues associated with the slope gradient. Participants succeeded in the task; however, a large sex difference emerged. Men showed a greater ability in using slope and a greater preference for relying on slope as a searching strategy. The female disadvantage was not due to wearing heeled shoes, but was probably related to a greater difficulty in extracting the vertical axis of the slope.


spatial abilities reorientation vertical dimension slope or geographical slant sex differences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition 23, 149–178 (1986)CrossRefGoogle Scholar
  2. 2.
    Proffitt, D.R., Bhalla, M., Gossweiler, M., Midgett, J.: Perciving geographical slant. Psychonomic Bulletin & Review 2, 409–428 (1995)Google Scholar
  3. 3.
    Restat, J.D., Steck, S.D., Mochnatzki, H.F., Mallot, H.A.: Geographical slant facilitates navigation and orientation in virtual environments. Perception 33, 667–687 (2004)CrossRefGoogle Scholar
  4. 4.
    Miniaci, M.C., Scotto, P., Bures, J.: Place navigation in rats guided by a vestibular and kinesthetic orienting gradient. Behavioural Neuroscience 113, 1115–1126 (1999)CrossRefGoogle Scholar
  5. 5.
    Nardi, D., Bingman, V.P.: Pigeon (Columba livia) encoding of a goal location: The relative importance of shape geometry and slope information. Journal of Comparative Psychology 123, 204–216 (2009)CrossRefGoogle Scholar
  6. 6.
    Nardi, D., Bingman, V.P.: Slope-based encoding of a goal location is unaffected by hippocampal lesions in homing pigeons (Columba livia). Behavioral Brain Research 205, 322–326 (2009)CrossRefGoogle Scholar
  7. 7.
    Strasser, R., Bingman, V.P.: Goal recognition and hippocampal formation in the homing pigeon (Columba livia). Behav. Neurosci. 111, 1245–1256 (1997)CrossRefGoogle Scholar
  8. 8.
    Vargas, J.P., Petruso, E.J., Bingman, V.P.: Hippocampal formation is required for geometric navigation in pigeons. European Journal of Neuroscience 20, 1937–1944 (2004)CrossRefGoogle Scholar
  9. 9.
    Nardi, D., Nitsch, K.P., Bingman, V.P.: Slope-Driven Goal Location Behavior in Pigeons. Journal of Experimental Psychology: Animal Behavior Processes (in press)Google Scholar
  10. 10.
    Sturzl, W., Cheung, A., Cheng, K., Zeil, W.: The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes 34, 1–14 (2008)CrossRefGoogle Scholar
  11. 11.
    Chai, X.J., Jacobs, L.F.: Sex difference in directional cue use in a virtual landscape. Behavioral Neuroscience 123, 276–283 (2009)CrossRefGoogle Scholar
  12. 12.
    Voyer, D., Voyer, S., Bryden, M.P.: Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin 117, 250–270 (1995)CrossRefGoogle Scholar
  13. 13.
    Kelly, D.M., Bischof, W.F.: Reorienting in images of a three-dimensional environment. Journal of Experimental Psychology: Human Perception and Performance 31, 1391–1403 (2005)CrossRefGoogle Scholar
  14. 14.
    Lawton, C.A., Charleston, S.I., Zieles, A.S.: Individual- and gender-related differences in indoor wayfinding. Environment and Behavior 28, 204–219 (1996)CrossRefGoogle Scholar
  15. 15.
    Sandstrom, N.J., Kaufman, J., Huettel, S.A.: Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research 6, 351–360 (1998)CrossRefGoogle Scholar
  16. 16.
    Franklin, N., Tversky, B.: Searching imagined environments. Journal of Experimental Psychology: General 119, 63–76 (1990)CrossRefGoogle Scholar
  17. 17.
    Alvis, G.R., Ward, J.R., Dodson, D.L.: Equivalence of male and female performance on a tactuo-spatial maze. Bulletin of the Psychonomic Society 27, 29–30 (1989)Google Scholar
  18. 18.
    Walker, J.T.: Tactual field dependence. Psychonomic Science 26, 311–313 (1972)Google Scholar
  19. 19.
    Berthiaume, F., Robert, M., St-Onge, R., Pelletier, J.: Absence of a gender difference in a haptic version of the water-level task. Bulletin of the Psychonomic Society 31, 57–60 (1993)Google Scholar
  20. 20.
    Jacobs, L.F., Schenk, F.: Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review 110, 285–315 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniele Nardi
    • 1
  • Nora S. Newcombe
    • 1
  • Thomas F. Shipley
    • 1
  1. 1.Department of PsychologyTemple UniversityPhiladelphiaUSA

Personalised recommendations