Interactive Assistance for Tour Planning

  • Yohei Kurata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)


It is often difficult for individual tourists to make a sightseeing tour plan because they do not have prior knowledge about the destination. Although several systems have been developed for assisting the user’s tour planning, these systems lack interactivity, while demanding a lot of data input from the user. In this paper, we introduce a new computer-aided tour planning system, called CT-Planner, which realizes collaborative tour planning. The system provides several tour plans with different characters and asks the user to give feedback. The feedback is utilized by the system for inferring the user’s preferences and then revising the tour plans. This cycle is repeated until the user is satisfied with the final plan. Thanks to this cycle the user does not have to register his profiles in advance. In addition, the system allows the user to specify his special requests, which leads to a more satisfying experience of computer-aided tour planning.


spatial assistance system tour planning personalization user’s preference human-computer interaction selective travelling salesman problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 613–627. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Schmidt-Belz, B., Nick, A., Poslad, S., Zipf, A.: Personalized and Location-Based Mobile Tourism Services. In: Workshop on Mobile Tourism Support Systems, pp. 18–20 (2002)Google Scholar
  3. 3.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: Personalized Recommendation of Tourist Attractions for Desktop and Handset Devices. Applied Artificial Intelligence: Special Issue on Artificial Intelligence for Cultural Heritage and Digital Libraries 17, 687–714 (2003)Google Scholar
  4. 4.
    Kishimoto, H., Mizuno, S.: Development of Tour Planning Support System Using MDL and Genetic Algorithm. In: AI symposium 1997, SIG-KBS, pp. 71–76 (1997) (in Japanese)Google Scholar
  5. 5.
    Kurata, Y., Okunuki, K., Sadahiro, Y.: Development of a Preference-Based Tour Planning System. Papers and Proceedings of the Geographic Information Systems Association, vol. 9, pp. 199–202 (2000) (in Japanese)Google Scholar
  6. 6.
    Maruyama, A., Shibata, N., Murata, Y., Yasumoto, K., Ito, M.: A Personal Tourism Navigation System to Support Traveling Multiple Destinations with Time Restrictions. In: IEEE International Conference on Advanced Information Networking and Applications, vol. 2, pp. 18–22 (2004)Google Scholar
  7. 7.
    Goy, A., Magro, D.: Star: A Smart Tourist Agenda Recommender. In: Configuration Workshop on ECAI 2004, pp. 8/1–8/7 (2004)Google Scholar
  8. 8.
    Lee, J., Kang, E., Park, G.: Design and Implementation of a Tour Planning System for Telematics Users. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 179–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Seifert, I.: Collaborative Assistance with Spatio-Temporal Planning Problems. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 90–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kurata, Y.: Challenges in User-Adaptive Tour Planning Systems. In: Tomko, M., Richter, K.-F. (eds.) AGILE 2009 Workshop on Adaptation in Spatial Communication. SFB/TR 8 Spatial Cognition report series, pp. 19–26 (2009)Google Scholar
  11. 11.
    Mark, D.: Finding Simple Routes: Ease of Description as an Objective Function in Automated Route Selection. In: Second Symposium on Artificial Intelligence Applications, pp. 577–581. IEEE Press, Los Alamitos (1985)Google Scholar
  12. 12.
    Duckham, M., Kulik, L.: Simplest Paths: Automated Route Selection for Navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Denis, M.: The Description of Routes: A Cognitive Approach to the Production of Spatial Discourse. Current Psychology of Cognition 16, 409–458 (1997)Google Scholar
  14. 14.
    Klippel, A., Tappe, H., Kulik, L., Lee, P.: Wayfinding Choremes: A Language for Modeling Conceptual Route Knowledge. Journal of Visual Languages and Computing 16, 311–329 (2005)CrossRefGoogle Scholar
  15. 15.
    Hochmair, H., Rinner, C.: Investigating the Need for Eliminatory Constraints in the User Interface of Bicycle Route Planners. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 49–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Saaty, T.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  17. 17.
    Laporte, G., Martello, S.: The Selective Travelling Salesman Problem. Discrete Applied Mathematics 26, 193–207 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Linden, G., Hanks, S., Lesh, N.: Interactive Assessment of User Preference Models: The Automated Travel Assistant. In: Jameson, A., Paris, C., Tasso, C. (eds.) Sixth International Conference on User Modeling, pp. 67–78. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Malczewski, J.: GIS and Multicriteria Decision Analysis. Wiley, Chichester (1999)Google Scholar
  20. 20.
    Raubal, M.: Formalizing Conceptual Spaces. In: Varzi, A., Vieu, L. (eds.) FOIS 2004, vol. 114, pp. 153–164. IOS Press, Amsterdam (2004)Google Scholar
  21. 21.
    Joset, M., Stille, W.: A User-Aware Tour Proposal Framework Using a Hybrid Optimization Approach. In: Voisard, A., Chen, S. (eds.) 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 81–87. ACM Press, New York (2002)Google Scholar
  22. 22.
    Matsuda, Y., Nakamura, M., Kang, D., Miyagi, H.: An Optimal Routing Problem for Sightseeing with Fuzzy Time-Varying Weights. IEEE International Conference on Systems, Man and Cybernetics 4, 3665–3669 (2004)Google Scholar
  23. 23.
    Bachrach, Y., Porat, E., Rosenschein, J.: Sketching Techinique for Collaborative Filtering. In: International Joint Conference on Artificial Intelligence, pp. 2016–2021. AAAI Press, Menlo Park (2009)Google Scholar
  24. 24.
    Rensnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: Grouplens: An Open Architecture for Collaborative Filtering of Netnews. In: ACM 1994 Conference on Computer Supported Cooperative Work, pp. 175–186. ACM Press, New York (1994)CrossRefGoogle Scholar
  25. 25.
    Shiraishi, T., Nagata, M., Shibata, N., Murata, Y., Yasumoto, K., Ito, M.: A Personal Navigation System with Functions to Compose Tour Schedules Based on Multiple Conflicting Criteria. IPSJ Digital Courier 1, 528–536 (2005)CrossRefGoogle Scholar
  26. 26.
    Richter, K.-F., Klippel, A., Freksa, C.: Shortest, Fastest, - but What Next? A Different Approach to Route Directions. In: Raubal, M., Sliwinski, A., Kuhn, W. (eds.) Münsteraner GI-Tagen 2004, pp. 205–217. IFGI prints, Münster (2004)Google Scholar
  27. 27.
    Frank, C.: An Egocentric Spatial Data Model for Intelligent Mobile Geographic Information Systems. Department of Spatial Information Science and Engineering, Master’s Thesis. University of Maine, Orono, Maine, USA (2003)Google Scholar
  28. 28.
    Kanda, T., Shiomi, M., Perrin, L., Nomura, T., Ishiguro, H., Hagita, N.: Analysis of People Trajectories with Ubiquitous Sensors in a Science Museum. In: IEEE International Conference on Robotics and Automation, pp. 4846–4853 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yohei Kurata
    • 1
  1. 1.Department of Tourism ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations