Advertisement

Reference Frames Influence Spatial Memory Development within and Across Sensory Modalities

  • Jonathan W. Kelly
  • Marios N. Avraamides
  • Timothy P. McNamara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)

Abstract

Research on spatial memory indicates that locations are remembered relative to reference frames, which define a spatial reference system. Reference frames are thought to be selected on the basis of environment-based and experience-based cues present during learning. Results from new experiments indicate that reference frames provide scaffolding during the development of spatial memories: the reference frame used to organize locations studied from one perspective was also used to organize new locations studied from another perspective. Further results indicate that the role of reference frames during spatial memory development can cross sensory modalities. Reference frames that organized memories of a visually-experienced environment also organized memories of haptically-experienced locations studied within the same environment. These findings indicate a role for reference frames during spatial memory development, and demonstrate that reference frames influence cross-modal spatial learning.

Keywords

Reference frames Spatial memory development Perspective taking Multi-modal learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avraamides, M.N.: Spatial updating of environments described in texts. Cognitive Psychology 47(4), 402–431 (2003)CrossRefGoogle Scholar
  2. 2.
    Avraamides, M.N., Kelly, J.W.: Imagined perspective-changing within and across novel environments. In: Freksa, C., Nebel, B., Knauff, M., Krieg-Brückner, B. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 245–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Avraamides, M.N., Kelly, J.W.: Multiple systems of spatial memory: Evidence from described scenes. Journal of Experimental Psychology: Learning, Memory & Cognition (in press)Google Scholar
  4. 4.
    Avraamides, M.N., Kelly, J.W.: Multiple systems of spatial memory and action. Cognitive Processing 9, 93–106 (2008)CrossRefGoogle Scholar
  5. 5.
    Brockmole, J.R., Wang, R.F.: Changing perspective within and across environments. Cognition 87, B59–B67 (2003)Google Scholar
  6. 6.
    Golledge, R.G., Ruggles, A.J., Pellegrino, J.W., Gale, N.D.: Integrating route knowledge in an unfamiliar neighborhood: Along and across route experiments. Journal of Environmental Psychology 13, 293–307 (1993)CrossRefGoogle Scholar
  7. 7.
    Greenauer, N., Waller, D.: Micro- and macro-reference frames: Specifying the relations between spatial categories in memory. Journal of Experimental Psychology: Learning, Memory, & Cognition (in press)Google Scholar
  8. 8.
    Hanley, G.L., Levine, M.: Spatial problem solving: The integration of independently learned cognitive maps. Memory & Cognition 11(4), 415–422 (1983)Google Scholar
  9. 9.
    Hintzman, D.L., O’Dell, C.S., Arndt, D.R.: Orientation in cognitive maps. Cognitive Psychology 13, 149–206 (1981)CrossRefGoogle Scholar
  10. 10.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13, 208–217 (1985)Google Scholar
  11. 11.
    Holding, C.S., Holding, D.H.: Acquisition of route network knowledge by males and females. Journal of General Psychology 116, 29–41 (1988)Google Scholar
  12. 12.
    Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology 52(2), 93–129 (2006)CrossRefGoogle Scholar
  13. 13.
    Kelly, J.W., Avraamides, M.N., Loomis, J.M.: Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology: Learning, Memory & Cognition 33(6), 1092–1107 (2007)CrossRefGoogle Scholar
  14. 14.
    Kelly, J.W., McNamara, T.P.: Spatial memories of virtual environments: How egocentric experience, intrinsic structure, and extrinsic structure interact. Psychonomic Bulletin & Review 15(2), 322–327 (2008)CrossRefGoogle Scholar
  15. 15.
    Lederman, S.J., Klatzky, R.L.: Hand movements: A window into haptic object recognition. Cognitive Psychology 19, 342–368 (1987)CrossRefGoogle Scholar
  16. 16.
    Maguire, E.A., Burke, T., Phillips, J., Staunton, H.: Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34(10), 993–1001 (1996)CrossRefGoogle Scholar
  17. 17.
    Maki, R.: Categorization and distance effects with spatial linear orders. Journal of Experimental Psychology: Human Learning & Memory 7, 15–32 (1981)CrossRefGoogle Scholar
  18. 18.
    May, M.: Cognitive and embodied modes of spatial imagery. Psychologische Beitrage 38, 418–434 (1996)Google Scholar
  19. 19.
    May, M.: Imaginal perspective switchers in remembered environments: Transformation versus interference accounts. Cognitive Psychology 48, 163–206 (2004)CrossRefGoogle Scholar
  20. 20.
    McNamara, T.P.: Mental representations of spatial relations. Cognitive Psychology 18, 87–121 (1986)CrossRefGoogle Scholar
  21. 21.
    McNamara, T.P.: How are the locations of objects in the environment represented in memory? In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 174–191. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    McNamara, T.P., Halpin, J.A., Hardy, J.K.: Spatial and temporal contributions to the structure of spatial memory. Journal of Experimental Psychology: Learning, Memory, & Cognition 18(3), 555–564 (1992)CrossRefGoogle Scholar
  23. 23.
    McNamara, T.P., Hardy, J.K., Hirtle, S.C.: Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory & Cognition 15, 211–227 (1989)CrossRefGoogle Scholar
  24. 24.
    McNamara, T.P., Rump, B., Werner, S.: Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review 10(3), 589–595 (2003)Google Scholar
  25. 25.
    Moar, I., Carleton, L.R.: Memory for routes. Quarterly Journal of Experimental Psychology A 34, 381–394 (1982)Google Scholar
  26. 26.
    Montello, D.R.: Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior 23(1), 47–69 (1991)CrossRefGoogle Scholar
  27. 27.
    Montello, D.R., Pick, H.L.: Integrating knowledge of vertically-aligned large-scale spaces. Environment and Behavior 25, 457–484 (1993)CrossRefGoogle Scholar
  28. 28.
    Mou, W., McNamara, T.P.: Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 28(1), 162–170 (2002)CrossRefGoogle Scholar
  29. 29.
    Shelton, A.L., McNamara, T.P.: Systems of spatial reference in human memory. Cognitive Psychology 43(4), 274–310 (2001)CrossRefGoogle Scholar
  30. 30.
    Shepard, R., Metzler, J.: Mental rotation of three dimensional objects. Science 171(972), 701–703Google Scholar
  31. 31.
    Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cognitive Psychology 10, 422–437 (1978)CrossRefGoogle Scholar
  32. 32.
    Valiquette, C.M., McNamara, T.P., Smith, K.: Locomotion, incidental learning, and the selection of spatial reference systems. Memory & Cognition 31, 479–489 (2003)Google Scholar
  33. 33.
    Waller, D., Lippa, Y., Richardson, A.: Isolating observer-based reference directions in human spatial memory: Head, body, and the self-to-array axis. Cognition 106, 157–183 (2008)CrossRefGoogle Scholar
  34. 34.
    Waller, D., Montello, D., Richardson, A.E., Hegarty, M.: Orientation specificity and spatial updating of memories for layouts. Journal of Experimental Psychology: Learning, Memory, & Cognition 28, 1051–1063 (2002)CrossRefGoogle Scholar
  35. 35.
    Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition 77, 215–250 (2000)CrossRefGoogle Scholar
  36. 36.
    Wang, R.F., Spelke, E.S.: Human spatial representation: insights from animals. Trends in Cognitive Sciences 6(9), 376–382 (2002)CrossRefGoogle Scholar
  37. 37.
    Werner, S., Schmidt, K.: Environmental reference systems for large-scale spaces. Spatial Cognition and Computation 1(4), 447–473 (1999)CrossRefGoogle Scholar
  38. 38.
    Yamamoto, N., Philbeck, J.W.: Egocentric and intrinsic frames of reference in haptic spatial learning. Poster presented at the 49th annual meeting of the Psychonomic Society, Chicago, IL (2008)Google Scholar
  39. 39.
    Yamamoto, N., Shelton, A.L.: Visual and proprioceptive representations in spatial memory. Memory & Cognition 33, 140–150 (2005)Google Scholar
  40. 40.
    Yamamoto, N., Shelton, A.L.: Orientation dependence of spatial memory acquired from auditory experience. Psychonomic Bulletin & Review 16(2), 301–305 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan W. Kelly
    • 1
  • Marios N. Avraamides
    • 2
  • Timothy P. McNamara
    • 3
  1. 1.Department of PsychologyIowa State UniversityAmes
  2. 2.Department of PsychologyUniversity of CyprusNicosiaCyprus
  3. 3.Department of PsychologyVanderbilt UniversityNashville

Personalised recommendations