Putting Egocentric and Allocentric into Perspective

  • Tobias Meilinger
  • Gottfried Vosgerau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)


In the last decade many studies examined egocentric and allocentric spatial relations. For various tasks, navigators profit from both kinds of relations. However, their interrelation seems to be underspecified. We present four elementary representations of allocentric and egocentric relations (sensorimotor contingencies, egocentric coordinate systems, allocentric coordinate systems, and perspective-free representations) and discuss them with respect to their encoding and retrieval. Elementary representations are problematic for capturing large spaces and situations which encompass both allocentric and egocentric relations at the same time. Complex spatial representations provide a solution to this problem. They combine elementary coordinate representations either by pair-wise connections or by hierarchical embedding. We discuss complex spatial representations with respect to computational requirements and their plausibility regarding behavioral and neural findings. This work is meant to clarify concepts of egocentric and allocentric, to show their limitations, benefits and empirical plausibility and to point out new directions for future research.


spatial memory egocentric allocentric sensorimotor contingencies coordinate system viewpoint-dependent perspective-free parietal cortex hippocampus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, R.A., Essick, G.K., Siegel, R.M.: Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985)CrossRefGoogle Scholar
  2. 2.
    Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J.: Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Reviews in Neuroscience 20, 303–330 (1997)CrossRefGoogle Scholar
  3. 3.
    Bülthoff, H.H., Edelman, S.: Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proceedings of the National Acadamy of Sciences of the United States of America 89, 60–64 (1992)CrossRefGoogle Scholar
  4. 4.
    Burgess, N.: Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences 10, 551–557 (2006)CrossRefGoogle Scholar
  5. 5.
    Burgess, N., Spiers, H.J., Paleologou, E.: Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. Cognition 94, 149–166 (2004)CrossRefGoogle Scholar
  6. 6.
    Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagination. Psychological Review 114, 340–375 (2007)CrossRefGoogle Scholar
  7. 7.
    Calton, J.L., Taube, J.S.: Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning. Neurobiology of Learning and Memory 91, 186–196 (2009)CrossRefGoogle Scholar
  8. 8.
    Campbell, J.: The role of physical objects in spatial thinking. In: Eilan, N., McCarthy, R., Brewer, B. (eds.) Spatial Representations. Problems in Philosophy and Psychology, pp. 65–95. Blackwell, Oxford (1993)Google Scholar
  9. 9.
    Diwadkar, V.A., McNamara, T.P.: Viewpoint dependence in scene recognition. Psychological Science 8, 302–307 (1997)CrossRefGoogle Scholar
  10. 10.
    Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392, 598–601 (1999)CrossRefGoogle Scholar
  11. 11.
    Epstein, R.A.: The cortical basis of visual scene processing. Visual Cognition 12, 954–978 (2005)CrossRefGoogle Scholar
  12. 12.
    Graziano, M.S.A., Cooke, D.F., Taylor, C.S.R.: Coding the location of arm by sight. Science 290, 1782–1786 (2000)CrossRefGoogle Scholar
  13. 13.
    Grush, R.: Self, World and Space: The Meaning and Mechanisms of Ego- and Allocentric Spatial Representations. Brain and Mind 1, 59–92 (2000)CrossRefGoogle Scholar
  14. 14.
    Hayward, W.G.: After the viewpoint debate: where next in object recognition? Trends in Cognitive Sciences 7, 425–427 (2003)CrossRefGoogle Scholar
  15. 15.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13, 208–217 (1985)Google Scholar
  16. 16.
    Holmes, M.C., Sholl, M.J.: Allocentric coding of object-to-object relations in overlearned and novel environments. Journal of Experimental Psychology: Learning, Memory and Cognition 31, 1069–1078 (2005)CrossRefGoogle Scholar
  17. 17.
    Jahn, G., Knauff, M., Johnson-Laird, P.N.: Preferred mental models in reasoning about spatial relations. Memory & Cognition 35, 2075–2087 (2007)Google Scholar
  18. 18.
    Johnson-Laird, P.N.: Mental models. Cambridge University Press, Cambridge (1983)Google Scholar
  19. 19.
    Kelly, J.W., McNamara, T.P.: Spatial memories of virtual environments: How egocentric experience, instrinsic structure, and extrinsic structure interact. Psychonomic Bulletin & Review 15, 322–327 (2008)CrossRefGoogle Scholar
  20. 20.
    Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Kuipers, B.: Drinking from the firehose of experience. Artificial Intelligence in Medicine 44, 155–170 (2008)CrossRefGoogle Scholar
  22. 22.
    Mallot, H.A., Basten, K.: Embodied spatial cognition: Biological and artificial systems. Image and Vision Computing 27, 1658–1670 (2009)CrossRefGoogle Scholar
  23. 23.
    McNamara, T.P., Slucenski, J., Rump, B.: Human Spatial Memory and Navigation. In: Roedinger III, H.L. (ed.) Cognitive Psychology of Memory. Learning and Memory: A comprehensive Reverence, vol. 2, 4 vols. (J. Byrne Editor). Elsevier, Oxford (2008)Google Scholar
  24. 24.
    Meilinger, T.: The network of reference frames theory: A synthesis of graphs and cognitive maps. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 344–360. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Meilinger, T., Franz, G., Bülthoff, H.H.: From Isovists via Mental Representations to Behaviour: First Steps Toward Closing the Causal Chain. Environment and Planning B (in press), doi:10.1068/b34048tGoogle Scholar
  26. 26.
    Mou, W., McNamara, T.P.: Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 28, 162–170 (2002)CrossRefGoogle Scholar
  27. 27.
    Mou, W., Fan, Y., McNamara, T.P., Owen, C.B.: Intrinsic frames of reference and egocentric viewpoints in scene recognition. Cognition 106, 750–769 (2008)CrossRefGoogle Scholar
  28. 28.
    Mou, W., Xiao, C., McNamara, T.P.: Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition 108, 136–154 (2008)CrossRefGoogle Scholar
  29. 29.
    Nardini, M., Thomas, R.L., Knowland, V.C.P., Braddick, O.J., Atkinson, J.: A viewpoint-independent process for spatial reorientation. Cognition 112, 241–248 (2009)CrossRefGoogle Scholar
  30. 30.
    Noë, A.: Action in Perception. MIT Press, Cambridge (2005)Google Scholar
  31. 31.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)Google Scholar
  32. 32.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 22, 939–973 (2001a)CrossRefGoogle Scholar
  33. 33.
    O’Regan, J.K., Noë, A.: What It is Like to See: A Sensorimotor Account of Vision and Visual Consciousness. Synthese 192, 79–103 (2001b)CrossRefGoogle Scholar
  34. 34.
    Poucet, B.: Spatial cognitve maps in animals: new hypotheses on the structure and neural mechanisms. Psychological Review 100, 163–182 (1993)CrossRefGoogle Scholar
  35. 35.
    Schlicht, T., Pompe, U.: Rezension von Alva Noë: Action in Perception. Zeitschrift für philosophische Forschung 61, 250–254 (2007)Google Scholar
  36. 36.
    Sholl, M.J., Nolin, T.L.: Orientation specificity in representations of place. Journal of Experimental Psychology: Learning, Memory, and Cognition 23, 1494–1507 (1997)CrossRefGoogle Scholar
  37. 37.
    Simons, D.J., Wang, R.F.: Perceiving real-world viewpoint changes. Psychological Science 9, 315–320 (1998)CrossRefGoogle Scholar
  38. 38.
    Snyder, L.H., Grieve, K.L., Brotchie, P., Anderson, R.A.: Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998)CrossRefGoogle Scholar
  39. 39.
    Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cognitive Psychology 10, 422–437 (1978)CrossRefGoogle Scholar
  40. 40.
    Stürzl, W., Cheung, A., Cheng, K., Zeil, J.: The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes 34, 1–14 (2008)CrossRefGoogle Scholar
  41. 41.
    Taube, J.S.: The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience 30, 181–207 (2007)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Tlauka, M., Nairn, M.J.: Encoding of multiple map orientations. Spatial Cognition and Computation 4, 359–372 (2004)CrossRefGoogle Scholar
  43. 43.
    Valiquette, C., McNamara, T.P.: Different mental representations for place recognition and goal localization. Psychonomic Bulletin & Review 14, 676–680 (2007)Google Scholar
  44. 44.
    Vosgerau, G.: Conceptuality in Spatial Representation. Philosophical Psychology 20, 349–365 (2007)CrossRefGoogle Scholar
  45. 45.
    Vosgerau, G.: Mental Representation and Self-Consciousness. From Basic Self-Representation to Self-Related Cognition. Mentis, Paderborn (2009)Google Scholar
  46. 46.
    Vosgerau, G., Schlicht, T., Newen, A.: Orthogonality of Phenomenality and Content. American Philosophical Quarterly 45, 309–328 (2008)Google Scholar
  47. 47.
    Waller, D., Hodgson, E.: Transient and enduring spatial representations under disorientation and self-rotation. Journal of Experimental Psychology: Learning, Memory, and Cognition 32, 867–882 (2006)CrossRefGoogle Scholar
  48. 48.
    Waller, D., Friedman, A., Hodgson, E., Greenauer, N.: Learning scenes from multiple views: Novel views can be recognized more efficiently than learned views. Memory & Cognition 37, 90–99 (2009)CrossRefGoogle Scholar
  49. 49.
    Waller, D., Montello, D.R., Richardson, A.E., Hegarty, M.: Orientation specificity and spatial updating of memories for layouts. Journal of Experimental Psychology: Learning, Memory, and Cognition 28, 1051–1063 (2002)CrossRefGoogle Scholar
  50. 50.
    Waller, D., Lippa, Y., Richardson, A.: Isolating observer-based reference directions in human spatial memory: Head, body and the self-to-array axis. Cognition 106, 157–183 (2008)CrossRefGoogle Scholar
  51. 51.
    Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition 77, 215–250 (2000)CrossRefGoogle Scholar
  52. 52.
    Wang, F.R., Spelke, E.S.: Human spatial representation: insights form animals. Trends in Cognitive Sciences 6, 376–382 (2002)CrossRefGoogle Scholar
  53. 53.
    Xiao, C., Mou, W., McNamara, T.P.: Use of self-to-object and object-to-object spatial relations in locomotion. Journal of Experimental Psychology: Learning, Memory, and Cognition 35, 1137–1147 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tobias Meilinger
    • 1
  • Gottfried Vosgerau
    • 2
  1. 1.Max-Planck-Institute for Biological CyberneticsTübingenGermany
  2. 2.Institut für PhilosophieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations