Human EEG Correlates of Spatial Navigation within Egocentric and Allocentric Reference Frames

  • Markus Plank
  • Hermann J. Müller
  • Julie Onton
  • Scott Makeig
  • Klaus Gramann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)


We investigated the impact of path complexity on brain dynamics of subjects who preferentially use an egocentric (Turners) or an allocentric (Nonturners) reference frame during spatial navigation. Participants indicated a return bearing direction (‘point-to-origin’) following visual presentation of virtual tunnel passages, varying with respect to the complexity of the outbound path. High-density electroencephalographic activity was recorded continuously and spatially filtered with Independent Component Analysis. For Turners, rotations and translations were associated with decreased and increased (8-12 Hz) alpha activity in occipito-parietal cortex, whereas Nonturners displayed increased alpha within cortical areas along the ventral pathway, as well as in retrosplenial cortex, an area supporting bidirectional exchange of information between parietal and medial temporal regions. Both groups displayed complexity-related modulations of frontal midline (4-8 Hz) theta activity. Findings extend results of hemodynamic imaging and neuropsychological studies on spatial navigation and emphasize the need for considering individual proclivities when investigating human navigation performance.


path integration reference frames egocentric allocentric EEG ICA Independent Component Analysis source reconstruction ERSP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gallistel, C.R.: The organization of learning. MIT Press, Cambridge (1993)Google Scholar
  2. 2.
    Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. In: Golledge, R.G. (ed.) Wayfinding behavior. Cognitive Mapping and Other Spatial Processes, pp. 125–151. John Hopkins Univ. Press, Baltimore (1999)Google Scholar
  4. 4.
    Burgess, N.: Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences 10, 551–557 (2006)CrossRefGoogle Scholar
  5. 5.
    Wang, R.F., Spelke, E.: Human spatial representation: Insights from animals. Trends in Cognitive Sciences 6, 376 (2002)CrossRefGoogle Scholar
  6. 6.
    Loomis, J.M., Klatzky, R.L., Golledge, R.G., Cicinelli, J.G., Pellegrino, J.W., Fry, P.A.: Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology - General 122, 73–91 (1993)CrossRefGoogle Scholar
  7. 7.
    Klatzky, R.L., Loomis, J.M., Golledge, R.G., Cicinelli, J.G., Doherty, S., Pellegrino, J.W.: Acquisition of route and survey knowledge in the absence of vision. Journal of Motor Behavior 22, 19–43 (1990)Google Scholar
  8. 8.
    McNamara, T.P., Rump, B., Werner, S.: Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review 10, 589–595 (2003)Google Scholar
  9. 9.
    Avraamides, M.N., Klatzky, R.L., Loomis, J.M., Golledge, R.G.: Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science 15, 403–408 (2004)CrossRefGoogle Scholar
  10. 10.
    Montello, D.R., Waller, D., Hegarty, M., Richardson, A.E.: Spatial memory of real environments, virtual environments, and maps. In: Allen, G.L. (ed.) Human Spatial Memory: Remembering where, pp. 251–285. Lawrence Erlbaum Associates, Mahwah (2004)Google Scholar
  11. 11.
    Shelton, A.L., Gabrieli, J.D.: Neural correlates of encoding space from route and survey perspectives. Journal of Neuroscience 22, 2711–2717 (2002)Google Scholar
  12. 12.
    Gramann, K., Müller, H.J., Eick, E.M., Schönebeck, B.: Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology - Human Perception and Performance 31, 1199–1223 (2005)CrossRefGoogle Scholar
  13. 13.
    Gramann, K., Müller, H.J., Schönebeck, B., Debus, G.: The neural basis of ego- and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Research 1118, 116–129 (2006)CrossRefGoogle Scholar
  14. 14.
    Bohbot, V.D., Lerch, J., Thorndycraft, B., Iaria, G., Zijdenbos, A.P.: Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience 27, 10078–10083 (2007)CrossRefGoogle Scholar
  15. 15.
    Gramann, K., El Sharkawy, J., Deubel, H.: Eye-movements during navigation in a virtual tunnel. International Journal of Neuroscience 119, 1755–1778 (2009)CrossRefGoogle Scholar
  16. 16.
    Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., Le Bihan, D.: The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research 133, 156–164 (2000)CrossRefGoogle Scholar
  17. 17.
    Merriam, E.P., Genovese, C.R., Colby, C.L.: Spatial updating in human parietal cortex. Neuron 39, 361–373 (2003)CrossRefGoogle Scholar
  18. 18.
    Cavanna, A.E., Trimble, M.R.: The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006)CrossRefGoogle Scholar
  19. 19.
    Andersen, R.A., Snyder, L.H., Bradley, D.C., Xing, J.: Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Reviews in Neuroscience 20, 303–330 (1997)CrossRefGoogle Scholar
  20. 20.
    Aguirre, G.K., D’Esposito, M.: Topographical disorientation: A synthesis and taxonomy. Brain 122, 1613–1628 (1999)CrossRefGoogle Scholar
  21. 21.
    Seubert, J., Humphreys, G.W., Müller, H.J., Gramann, K.: Straight after the turn: The role of the parietal lobes in egocentric space processing. Neurocase 14, 204–219 (2008)CrossRefGoogle Scholar
  22. 22.
    Vann, S.D., Aggleton, J.P.: Testing the importance of the retrosplenial guidance system: Effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research 155, 97–108 (2004)CrossRefGoogle Scholar
  23. 23.
    Burgess, N., Maguire, E.A., Spiers, H.J., O’Keefe, J.: A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14, 439–453 (2001)CrossRefGoogle Scholar
  24. 24.
    Ino, T., Inoue, Y., Kage, M., Hirose, S., Kimura, T., Fukuyama, H.: Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neuroscience Letters 322, 182–186 (2002)CrossRefGoogle Scholar
  25. 25.
    Redish, A.D.: Beyond the cognitive map: From place cells to episodic memory. The MIT Press, Cambridge (1999)Google Scholar
  26. 26.
    McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path integration and the neural basis of the ’cognitive map’. Nature Reviews Neuroscience 7, 663–678 (2006)CrossRefGoogle Scholar
  27. 27.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)CrossRefGoogle Scholar
  28. 28.
    Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S., Frith, C.D., O’Keefe, J.: Knowing where and getting there: A human navigation network. Science 280, 921–924 (1998)CrossRefGoogle Scholar
  29. 29.
    Jensen, O., Tesche, C.D.: Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience 15, 1395–1399 (2002)CrossRefGoogle Scholar
  30. 30.
    Bischof, W.F., Boulanger, P.: Spatial navigation in virtual reality environments: An EEG analysis. CyberPsychology and Behavior 6, 487–495 (2003)CrossRefGoogle Scholar
  31. 31.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews 29, 169–195 (1999)CrossRefGoogle Scholar
  32. 32.
    Lehmann, D., König, T.: Spatio-temporal dynamics of alpha brain electric fields, and cognitive modes. International Journal of Psychophysiology 26, 99–112 (1997)CrossRefGoogle Scholar
  33. 33.
    Pfurtscheller, G., Lopez da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110, 1842–1857 (1999)CrossRefGoogle Scholar
  34. 34.
    Onton, J., Makeig, S.: Information-based modeling of event-related brain dynamics. In: Neuper, C., Klimesch, E. (eds.) Progress in Brain Research, vol. 159, pp. 99–120 (2006)Google Scholar
  35. 35.
    Onton, J., Westerfield, M., Townsend, J., Makeig, S.: Imaging human EEG dynamics using independent component analysis. Neuroscience and Biobehavioral Reviews 30, 808–822 (2006)CrossRefGoogle Scholar
  36. 36.
    Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems 8, 145–151 (1996)Google Scholar
  37. 37.
    Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology 112, 713–719 (2001)CrossRefGoogle Scholar
  38. 38.
    Delorme, A., Makeig, S.: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  39. 39.
    Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11, 417–441 (1999)CrossRefGoogle Scholar
  40. 40.
    Oostenveld, R., Oostendorp, T.F.: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull. Human Brain Mapping 17, 179–192 (2002)CrossRefGoogle Scholar
  41. 41.
    Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology 86, 283–293 (1993)CrossRefGoogle Scholar
  42. 42.
    Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends in Cognitive Sciences 8, 204–210 (2004)CrossRefGoogle Scholar
  43. 43.
    Gramann, K., Onton, J., Riccobon, D., Müller, H.J., Bardins, S., Makeig, S.: Human brain dynamics accompanying the use of egocentric and allocentric reference frames during spatial navigation. Journal of Cognitive Neuroscience (in press)Google Scholar
  44. 44.
    Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex 7, 374–385 (1997)CrossRefGoogle Scholar
  45. 45.
    Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping 10, 120–131 (2000)CrossRefGoogle Scholar
  46. 46.
    Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde: In ihren Principien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, Leipzig (1925)Google Scholar
  47. 47.
    Harris, I.M., Egan, G.F., Sonkkila, C., Tochon-Danguy, H.J., Paxinos, G., Watson, J.D.G.: Selective right parietal lobe activation during mental rotation - A parametric PET study. Brain 123, 65–73 (2000)CrossRefGoogle Scholar
  48. 48.
    Morrone, M.C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., Burr, D.C.: A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience 3, 1322–1328 (2000)CrossRefGoogle Scholar
  49. 49.
    Calton, J.L., Taube, J.S.: Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning. Neurobiology of Learning and Memory 91, 186–196 (2009)CrossRefGoogle Scholar
  50. 50.
    Field, D.T., Wilkie, R.M., Wann, J.P.: Neural systems in the visual control of steering. Journal of Neuroscience 27, 8002–8010 (2007)CrossRefGoogle Scholar
  51. 51.
    Andersen, R.A.: Encoding of intention and spatial location in the posterior parietal cortex. Cerebral Cortex 5, 457–469 (1995)CrossRefGoogle Scholar
  52. 52.
    Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., Winkler, T.: ’Paradoxical’ alpha synchronization in a memory task. Cognitive Brain Research 7, 493–501 (1999)CrossRefGoogle Scholar
  53. 53.
    Kahana, M.J., Sekuler, R., Caplan, J.B., Kirschen, M., Madsen, J.R.: Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399, 781–784 (1999)CrossRefGoogle Scholar
  54. 54.
    Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.L., Kahana, M.J.: Human theta oscillations related to sensorimotor integration and spatial learning. Journal of Neuroscience 23, 4726–4736 (2003)Google Scholar
  55. 55.
    Makeig, S., Gramann, K., Jung, T.P., Sejnowski, T., Poizner, H.: Linking brain, mind and behavior. International Journal of Psychophysiology 73, 95–100 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Plank
    • 1
  • Hermann J. Müller
    • 2
  • Julie Onton
    • 3
  • Scott Makeig
    • 3
  • Klaus Gramann
    • 3
  1. 1.Institute for Neural ComputationUniversity of California San DiegoLa JollaUSA
  2. 2.Allgemeine und Experimentelle PsychologieLudwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaUSA

Personalised recommendations