Skip to main content

Dynamic Stability

  • Chapter
  • First Online:
Book cover Stellar Physics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1585 Accesses

Abstract

Processes underlying the stellar evolution are characterized by a wide variety of time scales, such as hydrodynamical (τh), thermal (τth), and nuclear (τn) times, and a time characterizing the weak interaction rate (τβ). Throughout most of the evolution, from the phase of the young contracting star to the late evolutionary phases, τh remains the smallest of all the time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (10.1) implies m = m 0 since only the rest mass is gravitating in Newtonian theory.

  2. 2.

    When S ≠ 0, the phase transitions are assumed to occur at S = const. The validity of this assumption is not obvious, it is only a rough method for describing a phase transition.

References

  1. Abrikosov, A.A.: On the internal structure of hydrogen planets. Vopr. Kosmogonii 3 12–19 (1954)

    Google Scholar 

  2. Antonov, V.A.: On the instability of stationary spherical models with merely radial motions. in Omarov G. B., ed., The Dynamics of Galaxies and Stellar Clusters. Nauka, Alma-Ata (in Russian), 139–143 (1973)

    Google Scholar 

  3. Ardeljan, N.V., Bisnovatyi-Kogan, G.S., Moiseenko, S.G.: Magnetorotational supernova. Mon. Not. R. Astron. Soc. 359, 333–344 (2005)

    Article  ADS  Google Scholar 

  4. Bisnovatyi-Kogan, G.S., Blinnikov, S.I.: Static criteria for stability of arbitrary rotating stars. Astron. Astrophys. 31, 391–404 (1974)

    ADS  Google Scholar 

  5. Bisnovatyi-Kogan, G.S., Dorodninsyn, A.V.: Application of Galerkin method to the problem of stellar stability, gravitational collapse and black hole formation. Grav. Cosmol. 4, 174–182 (1998)

    ADS  MATH  Google Scholar 

  6. Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A.: The stability of rotating supermassive stars. Astron. Astrophys. 27, 209–221 (1973)

    ADS  Google Scholar 

  7. Bisnovatyi-Kogan, G.S.: A simplified model of the formation of structures in dark matter and a background of very long gravitational waves. Mon. Not. R. Astron. Soc. 347, 163–172 (2004)

    Article  ADS  Google Scholar 

  8. Bisnovatyi-Kogan, G.S., Tsupko, O.Yu.: Approximate dynamics of dark matter ellipsoids. Mon. Not. R. Astron. Soc. 364, 833–842 (2005)

    Article  ADS  Google Scholar 

  9. Bisnovatyi-Kogan, G.S., Tsupko, O.Yu.: Dynamic stabilization of non-spherical bodies against unlimited collapse. Mon. Not. R. Astron. Soc. 386, 1398–1403 (2008)

    Article  ADS  Google Scholar 

  10. Bisnovatyi-Kogan, G.S.: Pulsar as a neutron star and weak interactions. Radiofiz. 13, 1868–1872 (1970)

    Google Scholar 

  11. Bisnovatyi-Kogan, G.S., Blinnikov, S.I., Schnol’, E.E.: Stability of stars in the presence of a phase transition. Astron. J. 52, 920–929 (1975) (Sov. Astron. 19, 559–564, 1976)

    Google Scholar 

  12. Blinnikov, S.I.: Self-consistent field method in the theory of rotating stars. Astron. J. 52, 243–254 (1975) (Sov. Astron. 19, 151–156, 1975)

    Google Scholar 

  13. Bonazzola, S., Gourgoulhon, E., Mark, J.-A.: Spectral methods in general relativistic astrophysics. J. Comput. Appl. Math. 109, 433–473 (1999)

    Article  ADS  MATH  Google Scholar 

  14. Bonazzola, S. and Gourgoulhon, E.: A virial identity applied to relativistic stellar models. Classical Quant. Grav. 11, 1775–1784 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chandrasekhar, S.: The dynamical instability of gaseous masses approching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417–433 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Chapman, S., Cowling, T.G.: Mathematical theory of inhomogeneous gases. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  17. Cox, J.P.: Stellar pulsation theory. Princeton University Press, Princeton (1980)

    Google Scholar 

  18. Fridman, A.M., Polyachenko, V.L.: Physics of Gravitating Systems. Springer, Berlin (1985)

    Google Scholar 

  19. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitational theory and gravitational collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  20. James, R.A.: The structure and stability of rotating gas masses. Astrophys. J. 140, 552–582 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kirzhnits, D.A., Lozovik, Yu.E., Shpatakovskaya, G.V.: A statistic model of matter. UFN. 117, 3–47 (1975) (Soviet. Phys. Uspekhi 18, 649–672, 1975)

    Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Mechanics of continuum media. Gostekhteorizdat, Moscow (1953)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: The theory of fields. Nauka, Moscow (1962)

    MATH  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Statistical physics I. Nauka, Moscow (1976)

    Google Scholar 

  25. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, New York (1983)

    Book  MATH  Google Scholar 

  26. Lighthill, H.J.: On the stability of small planetary cores (II). Mon. Not. R. Astron. Soc. 110, 339–342 (1950)

    MathSciNet  ADS  MATH  Google Scholar 

  27. Mazets, E.P., Golenetskii, S.V., Il’inskii, V.N., Panov, V.N., Aptekar, R.L., Gur’yan, Y.A., Proskura, M.P., Sokolov, I.A., Sokolova, Z.Ya., Kharitonova, T.V.: Catalog of cosmic gamma-ray bursts from the KONUS experiment data. Astrophys. Space Sci. 80, 3–83; 85–117; 119–143 (1981)

    Google Scholar 

  28. Ramsey, W.H.: On the stability of small planetary cores (I). Mon. Not. R. Astron. Soc. 110, 325–338 (1950)

    MathSciNet  ADS  MATH  Google Scholar 

  29. Saakyan, G.S.: Equilibrium configurations of degenerate gas masses. Nauka, Moscow (1972)

    Google Scholar 

  30. Seidov, Z.F.: Equilibrium of a star with a phase transition. Astrophys. 3, 189–201 (1967) (Astrophysics 3, 90–95, 1967)

    Google Scholar 

  31. Seidov, Z.F.: Polytropes with a phase transition. II., The polytrope n = 1. Soobzsh. Shemakh. Obs., Issue 5, 58–69 (1971)

    Google Scholar 

  32. Shnol’, E.E.: On the stability of stars with a density jump caused by phase transition. Preprint of IPM, No. 93 (1974)

    Google Scholar 

  33. Smirnov, V.I.: Course of high mathematics, vol. 2 Nauka, Moscow (1962)

    Google Scholar 

  34. Smirnov, V.I.: Course of high mathematics, vol. 4 Gostekhizdat, Moscow (1962)

    Google Scholar 

  35. Vartanyan, Yu.L., Ovsepyan, A.V., Adzhjyan, G.S.: On the stability and radial pulsations of rotating neutron stars. Astron. J. 50, 48–59 (1973) (Sov. Astron. 17, 30–37, 1973)

    Google Scholar 

  36. Zel’dovich, Ya.B.: Static solutions with energy excess in general relativity. Jurnal Eksperimental’noi i Teoreticheskoi Fiziki (J. Exp. Theor. Phys., JETP) 42, 1667–1671 (1962)

    Google Scholar 

  37. Zel’dovich, Ya.B.: Hydrodynamical stability of star. Vopr. Kosmog. 9, 157–170 (1963)

    Google Scholar 

  38. Zel’dovich, Ya.B., Novikov, I.D.: Relativistic astrophysics. II. UFN. 86, 447–536 (1965) (Soviet. Phys. Uspekhi 8, 522–577, 1966)

    Google Scholar 

  39. Zel’dovich, Ya.B., Novikov, I.D.: Gravitation theory and stellar evolution. Moscow, Nauka (1971)

    Google Scholar 

  40. Zel’dovich, Ya.B., Novikov, I.D.: Relativistic astrophysics. Moscow, Nauka (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady S. Bisnovatyi-Kogan .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bisnovatyi-Kogan, G.S. (2010). Dynamic Stability. In: Stellar Physics. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14734-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14734-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14733-3

  • Online ISBN: 978-3-642-14734-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics