Skip to main content

Nuclear Evolution of Stars

  • Chapter
  • First Online:
Stellar Physics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1640 Accesses

Abstract

After seminal studies [878], the calculations of stellar evolution have been performed by various groups of researchers in a wide mass range with use of increasingly more powerful computers. There is presently (2001) a general understanding of the nuclear evolution of a star from the main sequence (MS) to a white dwarf, neutron star, or black hole formation. However, although much effort has gone into solving these problems, we now have but a crude evolutionary scheme, and many details are not sufficiently reliable. The results of calculations made by diverse authors, though qualitatively similar, differ in detail. A major reason is the uncertainty in most of the physical grounds of the stellar evolution theory, such as convection, mixing, rates of nuclear reactions at low energies, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The description of convection in [462] is even more simplified.

  2. 2.

    See, however, [938], Fig. 9.18 and Table 9.8.

  3. 3.

    A modified version of Paczynski’s program allowing stable running in rapid evolutionary phases, based on a special choice of the calculation of the derivatives for different functions in difference equations, has been used in [779], see also Chap. 6, Vol. 1; input into luminosity due to traversing of the boundary of chemical composition jump by the convective zone is correctly calculated in [781].

  4. 4.

    It is asserted in [1033] that the calculations use the Ledoux criterion for convection. However, there is a good coincidence between evolutionary tracks from [1033] and [608], where the Schwarzschild criterion has been used (see Fig. 9.10). In both calculations helium burning is in the blue supergiant region.

  5. 5.

    The stellar magnitude M is defined as a logarithm of the stellar luminosity. The bolometric (total) absolute magnitude \({M}_{\mathrm{bol}} = 4.74 - 2.5\lg (L/{L}_{\odot })\). The visual magnitude (interstellar absorption is not taken into account) is \(m = M - 5 + 5\lg {d}_{\mathrm{pc}}\), d pc being the distance to the star in parsecs. For crude estimates of the spectrum, stellar magnitudes in separate spectral ranges are used; the latter are determined by the following optical filters: m U around λ = 3650A, m B around λ = 4400A, m V around λ = 5500A with Δλ ≈ 800A. Photo-visual magnitude is m phm V . The colour index BV ( ≡ m B m V ) does not depend on the distance to the star and corresponds to its temperature, \(B - V \approx(7300\ \mathrm{K/{T}_{\mathrm{ef}}}) - 0.60\). More accurate definitions of stellar magnitudes taking into account the transparency curves for filters, energy distributions in the stellar spectrum and interstellar absorption are given in [15].

  6. 6.

    The core mass M c is defined as if the core boundary is in the middle of the hydrogen-burning shell [770].

  7. 7.

    In some papers (e.g., [885]), the term “flash” denotes what we call here “flash peak”, while the “relaxation cycle” is identical to our “flash”. Other terms may also be encountered in texts.

  8. 8.

    Nonlinear character of the bulk viscosity in the highly degenerate matter is due to nonlinear dependence of the reaction rate of the electron capture on the matter density, see Sect. 5.1.4, Vol.1.

References

  1. Allen, K.U.: Astrophysical Quantities Athlone Press, University of London (1973)

    Google Scholar 

  2. Alexander, D.: Low temperature Rosseland opacity tables. Astrophys. J. Suppl. 29, 363–374 (1975)

    Article  ADS  Google Scholar 

  3. Alexander, D.R., Ferguson, J.W.: Low-temperature Rosseland opacities. Astrophys. J. 437, 879–891 (1994)

    Article  ADS  Google Scholar 

  4. Andersen, J.: Accurate masses and radii of normal stars. Astron. Astrophys. Rev. 3, 91–126 (1991)

    Article  ADS  Google Scholar 

  5. Arnett, D.: A possible model of supernovae: detonation of 12C. Astrophy. Space Sci. 5, 180–212 (1969)

    Article  ADS  Google Scholar 

  6. Barkat, Z., Wheeler, J.C.: The convective URCA mechanism. Astrophys. J. 355, 602–616 (1990)

    Article  ADS  Google Scholar 

  7. Beaudet, G., Petrosian, V., Salpeter, E.E.: Energy losses due to neutrino processes. Astrophys. J. 150, 979–999 (1967)

    Article  ADS  Google Scholar 

  8. Becker, S., Iben, I.: The asymptotic giant branch evolution of intermediate-mass stars as a function of mass and composition. I. Through the second dredge-up phase. Astrophys. J. 232, 831–853 (1979)

    Article  ADS  Google Scholar 

  9. Becker, S., Iben, I., Tuggle, R.: On the frequency–period distribution of Cepheid variables in galaxies in the local group. Astrophys. J. 218, 633–653 (1977)

    Article  ADS  Google Scholar 

  10. Bisnovatyi-Kogan, G.S.: Stellar Oscillations and Stellar Convection in the Presence of an URCA Shell. Mon. Not. R. Astron. Soc. 321, 315–326 (2001)

    Article  ADS  Google Scholar 

  11. Bisnovatyi-Kogan, G.S., Dorodninsyn, A.V.: On modeling radiation-driven envelopes at arbitrary optical depths. Astron. Astrophys. 344, 647–654 (1999)

    ADS  Google Scholar 

  12. Bisnovatyi-Kogan, G.S., Nadyozhin, D.K.: The evolution of massive stars with mass loss. Astrophys. Space Sci. 15, 353–374 (1972)

    Article  ADS  Google Scholar 

  13. Bisnovatyi-Kogan, G.S.: Perfect gas flow in a spherically symmetric gravitational field with the inclusion of radiative heat transfer and radiation pressure. Prikl. Mat. Mech. 31, 762–769 (1967)

    Google Scholar 

  14. Bisnovatyi-Kogan, G.S., Zel’dovich, Ya.B.: The Matter outflow out of stars under the effect of high opacity in the envelope. Report at 35 Comm. XIII Gen. As. IAU, preprint of IPM (1967)

    Google Scholar 

  15. Bisnovatyi-Kogan, G.S., Zel’dovich, Ya.B.: The matter outflow out of stars under the effect of high opacity in the atmosphere. Astron. J. 45, 241–250 (1968) (Sov. Astron. 12, 192–198, 1968)

    Google Scholar 

  16. Bisnovatyi-Kogan, G.S., Nadyozhin, D.K.: A Calculation method for evolution of stars with mass loss. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 11, 27–39 (1969)

    Google Scholar 

  17. Bisnovatyi-Kogan, G.S., Seidov, Z.F.: Non-equilibrium beta-processes as a source of thermal energy of white dwarfs. Astron. J. 47, 139–144 (1970) (Sov. Astron. 14, 113–116, 1970)

    Google Scholar 

  18. Braaten, E., Segel, D.: Neutrino energy loss from the plasma process at all temperatures and densities. Phys. Rev. D48, 1478–1491 (1993)

    ADS  Google Scholar 

  19. Bruenn, S.W.: Thermal consequences of the convectively driven URCA process. Astrophys. J. 183, L125–L129 (1973)

    Article  ADS  Google Scholar 

  20. Carson, T.R., Huebner, W.F., Magee, N.H., Merts, A.L.: Discrepancy in the CNO opacity bump resolved. Astrophys. J. 283, 466–468 (1984)

    Article  ADS  Google Scholar 

  21. Castor, J.I., Abbott, D.C., Klein, R.I.: Radiation-driven winds in Of stars. Astrophys. J. 195, 157–174 (1974)

    Article  ADS  Google Scholar 

  22. Caughlan, G.R., Fowler, W.A.: Thermonuclear reaction rates V. Atom. Data Nucl. Data Table 40, 283–334 (1988)

    Article  ADS  Google Scholar 

  23. Charbonnel, C., Meynet, G., Maeder, A., Schaller, G., Schaerer, D.: Grids of stellar models. III. From 0. 8 to 120 M at Z=0. 004. Astron. Astrophys. Suppl. 101, 415–419 (1993)

    Google Scholar 

  24. Chevalier, R., Dwarkadas, V.V.: The presupernova H II region around SN 1987A. Astrophys. J. Lett. 452, L45–L48 (1995)

    Article  ADS  Google Scholar 

  25. Cloutman, L., Whitaker, R.: On convective and semiconvective mixing in massive stars. Astrophys. J. 237, 900–902 (1980)

    Article  ADS  Google Scholar 

  26. Cottam, J., Paerels, F., Mendez, M.: Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star. Nature, 420, 51–54 (2002)

    Article  ADS  Google Scholar 

  27. Couch, R.G., Arnett, W.D.: Carbon ignition and burning in degenerate stellar cores. Astrophys. J. 196, 791–803 (1975)

    Article  ADS  Google Scholar 

  28. Cox, A., Tabor, J.: Radiative opacity tables for 40 stellar mixtures. Astrophys. J. Suppl. 31, 271–312 (1976)

    Article  ADS  Google Scholar 

  29. Cox, A.N.: Absorption coefficients and the opacity of stellar matter. In: Aller, L.H. (ed.) Stellar Structure, D. B. McLaughlin. University of Chicago Press, Chicago (1965)

    Google Scholar 

  30. Cox, A., Stuart, G.: Radiative absorption and heat conductivity: opacities for 25 stellar mixtures. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 15, 3–103 (1969)

    Google Scholar 

  31. Cox, J.P.: Stellar pulsation theory. Princeton University Press, Princeton (1980)

    Google Scholar 

  32. Dar, A., Shaviv, G.: A standard model solution to the solar neutrino problem? Preprint astro-ph 9401043 (1994)

    Google Scholar 

  33. Dar, A., Shaviv, G.: Has a standard physics solution to the solar neutrino problem been found?-A response. Preprint astro-ph 9404035 (1994)

    Google Scholar 

  34. Dorodnitsyn, A.V.: Line-driven winds in the presence of strong gravitational fields. Mon. Not. R. Astron. Soc. 339, 569–576 (2003)

    Article  ADS  Google Scholar 

  35. Dorodnitsyn, A.V., Novikov, I.D.: On the structure of line-driven winds near black holes. Astrophys. J. 621, 932–939 (2005)

    Article  ADS  Google Scholar 

  36. Dorodnitsyn, A.V.: Gravitationally distorted P Cygni profiles from outflows near compact objects Mon. Not. R. Astron. Soc. 393, 1433–1448 (2009)

    Article  ADS  Google Scholar 

  37. Dzytko, H., Turck-Chieze, S., Delburgo-Salvador, P., Lagrange, C.: The screened nuclear reaction rates and the solar neutrino puzzle. Astrophys. J. 447, 428–442 (1995)

    Article  ADS  Google Scholar 

  38. Eggleton, P.: The structure of narrow shells in red giants. Mon. Not. R. Astron. Soc. 135, 243–250 (1967)

    ADS  Google Scholar 

  39. Eggleton, P.: Towards consistency in simple prescriptions for stellar convection. Mon. Not. R. Astron. Soc. 204, 449–461 (1983)

    ADS  MATH  Google Scholar 

  40. El Eid, M.: Effect of convective mixing on the red-blue loops in the Hertzsprung–Russell diagram. Mon. Not. R. Astron. Soc. 275, 983–1002 (1995)

    Google Scholar 

  41. El Eid, M., Hartmann D.H.: Stellar models and the brightening of P Cygni. Astrophys. J. 404, 271–275 (1993)

    Article  ADS  Google Scholar 

  42. El Eid, M., Langer, N.: The evolution of very luminous stars II. Pair creation supernova in massive Wolf–Rayet stars. Astron. Astrophys. 167, 274–281 (1986)

    Google Scholar 

  43. Ergma, E., Paczynski, B.: Carbon burning with convective URCA neutrinos. Acta Astron. 24, 1–16 (1974)

    ADS  Google Scholar 

  44. Fadeev, Yu.A.: On the possibility for dust particles to form in the FG sagittae atmosphere. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 50, 3–9 (1981)

    Google Scholar 

  45. Finzi, A., Wolf, R.: Ejection of mass by radiation pressure in planetary nebulae. Astron. Astrophys. 11, 418–430 (1971)

    ADS  Google Scholar 

  46. Fowler, W., Caughlan, G., Zimmerman, B.: Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525–570 (1967)

    Article  ADS  Google Scholar 

  47. Fowler, W., Caughlan, G., Zimmerman, B.: Thermonuclear reaction rates II. Annu. Rev. Astron. Astrophys. 13, 69–112 (1975)

    Article  ADS  Google Scholar 

  48. Glendenning, N.: First-order phase transitions with more than one conserved charge: consequences for neutron stars. Phys. Rev. D 46, 1274–1287 (1992)

    Article  ADS  Google Scholar 

  49. Gurevich, L.E., Libedinskii, A.I.: On the causes of stellar bursts, Proc of 4th Conf. on Cosmogony Problems, Moscow, AN SSSR, pp. 143–171 (1955)

    Google Scholar 

  50. Han, Z., Podsiadlowski, P., Eggleton, P.P.: A possible criterion for envelope ejection in AGB or FGB stars. Mon. Not. R. Astron. Soc. 270, 121–130 (1994)

    ADS  Google Scholar 

  51. Harm, R., Schwarzschild, M.: Red giants of population II. IV. Astrophys. J. 145, 496–504 (1966)

    Article  ADS  Google Scholar 

  52. Harm, R., Schwarzschild, M.: Transport from a gas giant to a blue nucleus after ejection of a planetary nebula. Astrophys. J. 200, 324–329 (1975)

    Article  ADS  Google Scholar 

  53. Harm, R., Schwarzschild, M.: Red giants of population II. III. Astrophys. J. 139, 594–601 (1964)

    Article  ADS  Google Scholar 

  54. Harris, M., Fowler, W., Caughlan, G. Zimmerman, B.: Thermonuclear reaction rates III. Annu. Rev. Astron. Astrophys. 21, 165–176 (1983)

    Google Scholar 

  55. Haselgrove, C.B., Hoyle, F.: Main-sequence stars. Mon. Not. R. Astron. Soc. 119, 112–123 (1959)

    ADS  Google Scholar 

  56. Hayashi, Ch., Hoshi, R., Sugimoto, D.: Evolution of stars. Progr. Theor. Phys. Suppl. 22, 1–183 (1962)

    Article  ADS  Google Scholar 

  57. Herbig, G.: The widths of absorption lines in T Tauri-like stars. Astrophys. J. 125, 612–613 (1957)

    Article  ADS  Google Scholar 

  58. Houck, J.R., et al.: Unidentified point sources in the IRAS minisurvey. Astrophys. J. Lett. 278, L63–L66 (1984)

    Article  ADS  Google Scholar 

  59. Iben, I., Jr.: Stellar evolution. I. The approach to the main sequence. Astrophys. J. 141, 993–1018 (1965)

    Article  ADS  Google Scholar 

  60. Iben, I.: Stellar evolution. II. The evolution of a 3 M star from main sequence through core helium burning. Astrophys. J. 142, 1447–1467 (1965)

    Google Scholar 

  61. Iben, I.: Stellar evolution. III. The evolution of a 5 M star from main sequence through core helium burning. Astrophys. J. 143, 483–504 (1966)

    Google Scholar 

  62. Iben, I.: Stellar evolution. IV. The evolution of a 9 M star from main sequence through core helium burning. Astrophys. J. 143, 505–515 (1966)

    Google Scholar 

  63. Iben, I.: Stellar evolution. V. The evolution of a 15 M star through core helium burning from the main sequence. Astrophys. J. 143, 516–526 (1966)

    Google Scholar 

  64. Iben, I.: Stellar evolution. VI. Evolution from the main sequence to the red-giant branch for stars of mass 1 M , 1. 25 M and 1. 5 M . Astrophys. J. 147, 624–649 (1967)

    Google Scholar 

  65. Iben, I.: Stellar evolution. VII. Evolution of 2. 25 M star from the main sequence to the helium burning phase. Astrophys. J. 147, 650–663 (1967)

    Google Scholar 

  66. Iben, I.: Stellar evolution within and off the main sequence. Annu. Rev. Astron. Astrophys. 5, 571–626 (1967)

    Article  ADS  Google Scholar 

  67. Iben, I.: On the specification of the blue edge of the RR Lyrae instability trip Astrophys. J. 166, 131–151 (1971)

    ADS  Google Scholar 

  68. Iben, I.: Post main sequence evolution of single stars. Annu. Rev. Astron. Astrophys. 12, 215–256 (1974)

    Article  ADS  Google Scholar 

  69. Iben, I.: Thermal pulses; p-capture, α-capture, s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Astrophys. J. 196, 525–547 (1975)

    Article  ADS  Google Scholar 

  70. Iben, I.: Solar oscillations as a guide to solar structure. Astrophys. J. Lett. 204, L147–L150 (1976)

    Article  ADS  Google Scholar 

  71. Iben, I.: Futher adventures of a thermally pulsing star. Astrophys. J. 208, 165–176 (1976)

    Article  ADS  Google Scholar 

  72. Iben, I., Jr.: URCA neutrino-loss rates under conditions found in the carbon-oxygen cores of intermediate-mass stars. Astrophys. J. 219, 213–225 (1978)

    Article  ADS  Google Scholar 

  73. Iben, I., Jr.: More on carbon burning in electron-degenerate matter - within single stars of intermediate mass and within accreting white dwarfs. Astrophys. J. 253, 248–259 (1982)

    Article  ADS  Google Scholar 

  74. Iben, I.: Low-mass asymptotic giant branch evolution I. Astrophys. J. 260, 821–837 (1982)

    Article  ADS  Google Scholar 

  75. Iben, I.: On the frequency of a planetary nebula nuclei powered by helium burning and on the frequency of white dwarfs with hydrogen-deficient atmospheres. Astrophys. J. 277, 333–354 (1984)

    Article  ADS  Google Scholar 

  76. Iben, I.: The life and times of an intermediate mass star – in isolation/in a close binary. Q. J. Roy. Astron. Soc. 26, 1–39 (1985)

    ADS  Google Scholar 

  77. Iben, I.: Single and binary star evolution. Astrophys. J. Suppl. 76, 55–114 (1991)

    Article  ADS  Google Scholar 

  78. Iben, I., Kaler, J., Truran, J., Renzini, A.: On the evolution of those nuclei of planetary nebulae, that experience a final helium shell flash. Astrophys. J. 264, 605–612 (1983)

    Article  ADS  Google Scholar 

  79. Iben, I., Renzini, A.: Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 21, 271–342 (1983)

    Article  ADS  Google Scholar 

  80. Iben, I., Renzini, A.: Single star evolution I. Massive stars and early evolution of low and intermediate mass stars. Phys. Rep. 105, 329–406 (1984)

    ADS  Google Scholar 

  81. Iben, I., Rood, R.: Metal-poor stars I. Evolution from the main sequence to the giant branch. Astrophys. J. 159, 605–617 (1970)

    Google Scholar 

  82. Iben, I., Tutukov, A.V.: Cooling of low-mass carbon-oxygen dwarfs from the planetary nucleus stage through the crystallization stage. Astrophys. J. 282, 615–630 (1984)

    Article  ADS  Google Scholar 

  83. Iglesias, C.A., Rogers, F.J., Wilson, B.J.: Spin-orbit interaction effects on the Rosseland mean opacity. Astrophys. J. 397, 711–728 (1992)

    Article  ADS  Google Scholar 

  84. Iglesias, C.A., Rogers, F.J.: Radiative opacities for carbon and oxygen-rich mixtures. Astrophys. J. 412, 752–760 (1993)

    Article  ADS  Google Scholar 

  85. Iglesias, C.A., Wilson, B.J., Rogers, F.J., Goldstein, W.H., Bar-Shalom, A., Oreg, J.: Effects of heavy metals on astrophysical opacities. Astrophys. J. 445, 855–860 (1995)

    Article  ADS  Google Scholar 

  86. Kato, M., Iben, I.: Self-consistent models of Wolf–Rayet stars as helium stars with optically thick winds. Astrophys. J. 394, 305–312 (1992)

    Article  ADS  Google Scholar 

  87. Kellman, S., Gaustad, J.: Rosseland and Planck mean absorption coefficients for particles 1of ice, graphite and silicon dioxide. Astrophys. J. 157, 1465–1470 (1969)

    Article  ADS  Google Scholar 

  88. Kippenhahn, R., Thomas, H.C., Weigert, A.: Sternentwicklung IV. Zentrales Wasserstoff und Heliumbrenner bei einen Stern von 5 Sonnenmassen. Zeit. Astrophys. 61, 241–267 (1965)

    Google Scholar 

  89. Kippenhahn, R., Thomas, H.C., Weigert, A.: Sternentwicklung V. Der Kohlenstoff-Flash bei einen Stern von 5 Sonnenmassen. Zeit. Astrophys. 64, 373–394 (1966)

    Google Scholar 

  90. Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution Springer, Berlin (1990)

    Google Scholar 

  91. Kippenhahn, R., Weigert, A., Hofmeister, E.: Methods for calculating stellar evolution. Meth. Comput. Phys. 7, 129–190 (1967)

    Google Scholar 

  92. Kutter, G.S., Savedoff, M.P., Schuerman, D.W.: A mechanism for the production of planetary nebulae. Astrophys. Space Sci. 3, 182–197 (1969)

    Article  ADS  Google Scholar 

  93. Kutter, G.S., Sparks, W.: Studies of hydrodynamic events in stellar evolution III. Ejection of planetary nebulae. Astrophys. J. 192, 447–455 (1974)

    Article  Google Scholar 

  94. Kwok, S.: From red giants to planetary nebulae. Astrophys. J. 258, 280–288 (1982)

    Article  ADS  Google Scholar 

  95. Lamb, S., Iben, I., Howard, M.: On the evolution of massive stars through the core carbon-burning phase. Astrophys. J. 207, 209–232 (1976)

    Article  ADS  Google Scholar 

  96. Lamers, H.: The dependence of mass loss on the basic stellar parameters. In: Chiosi, C., Stalio, R. (eds.) Effects of Mass Loss on Stellar Evolution, pp. 19–23. Reidel, Dordrecht (1981)

    Chapter  Google Scholar 

  97. Lamers, H.J.G.L., Leitherer, C.: What are the mass-loss rates of O stars? Astrophys. J. 412, 771–791 (1993)

    Article  ADS  Google Scholar 

  98. Landau, L.D., Lifshitz, E.M.: Mechanics of continuum media. Gostekhteorizdat, Moscow (1953)

    Google Scholar 

  99. Landau, L.D., Lifshitz, E.M.: The theory of fields. Nauka, Moscow (1962)

    MATH  Google Scholar 

  100. Langer, N., Hamann, W.-R., Lennon, M., Najarro, F., Pauldrach, A.W.A., Puls, J.: Towards an understanding of very massive stars. A new evolutionary scenario relating O stars, LBVs and Wolf–Rayet stars. Astron. Astrophys. 290, 819–833 (1994)

    Google Scholar 

  101. Lazareff, B.: Thermodynamics of convective URCA cores. Astron. Astrophys. 45, 141–143 (1975)

    ADS  Google Scholar 

  102. Lozinskaya, T.A.: Supernovae and stellar wind. The interaction with gas of galaxy. Nauka, Moscow (1986)

    Google Scholar 

  103. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: On the stability of magnetic wind-driven accretion discs. Mon. Not. R. Astron. Soc. 267, 235–240 (1994)

    ADS  Google Scholar 

  104. Lucy, L.: Formation of planetary nebulae. Astron. J. 72, 813 (1967)

    Google Scholar 

  105. Lucy, L.B.: Radiatively-driven stellar winds. Preprint No. 419 European Southern Observatory (1986)

    Google Scholar 

  106. Maeder, A.: Stellar evolution III: the overshooting from convective cores. Astron. Astrophys. 40, 303–310 (1975)

    ADS  Google Scholar 

  107. Maeder, A.: The most massive stars evolving to red supergiants: evolution with mass loss, WR stars, as post-red supergiants and pre-supernovae. Astron. Astrophys. 99, 97–107 (1981)

    ADS  Google Scholar 

  108. Maeder, A.: Grid of evolutionary models for upper part of the HR diagram, mass loss and the turning of some red supergiants into WR stars. Astron. Astrophys. 102, 401–410 (1981)

    ADS  Google Scholar 

  109. Massevich, A.G., Tutukov, A.V.: The evolution of massive stars and semiconvection problem, Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 29, 3–26 (1974)

    Google Scholar 

  110. Mestel, L.: On the theory of white dwarf stars. II. The accretion of interstellar matter by white dwarfs. Mon. Not. R. Astron. Soc. 112, 598–605 (1952)

    Google Scholar 

  111. Mochkovitch, R.: The thermodynamics of the convective URCA process. Astron. Astrophys. 311, 152–154 (1996)

    ADS  Google Scholar 

  112. Morton, D.: Mass loss from three OB supergiants in Orion. Astrophys. J. 150, 535–542 (1967)

    Article  ADS  Google Scholar 

  113. Nadyozhin, D.K.: Evolution of a star with M=30 M ⊙ in hydrogen-burning phase., Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 4, 37–64 (1966)

    Google Scholar 

  114. Owocki, S.P., Castor, J.I., Rybicki, G.B.: Time-dependent models of radiatively driven stellar winds. I. Non-linear evolution of instabilities for a pure absorption model. Astrophys. J. 335, 914–930 (1988)

    Article  Google Scholar 

  115. Paczynski, B.: Envelopes of red supergiant. Acta Astron. 19, 1–22 (1969)

    ADS  Google Scholar 

  116. Paczynski, B.: Evolution of single stars. I. Stellar evolution from main sequence to white dwarf or carbon ignition. Acta Astron. 20, 47–58 (1970)

    Google Scholar 

  117. Paczynski, B.: Evolution of single stars. II. Core helium burning in population I stars. Acta Astron. 20, 195–212 (1970)

    Google Scholar 

  118. Paczynski, B.: Evolution of single stars. III. Stationary shell source. Acta Astron. 20, 287–309 (1970)

    Google Scholar 

  119. Paczynski, B.: Evolution of single stars. V. Carbon ignition in population I stars. Acta Astron. 21, 271–288 (1971)

    Google Scholar 

  120. Paczynski, B.: Evolution of single stars. VI. Model nuclei of planetary nebulae. Acta Astron. 21, 471–435 (1971)

    Google Scholar 

  121. Paczynski, B.: Carbon ignition in degenerate stellar cores. Astrophys. Lett. 11, 53–55 (1972)

    ADS  Google Scholar 

  122. Paczynski, B.: Linear series of stellar models. I. Thermal stability of stars. Acta Astron. 22, 163–174 (1972)

    Google Scholar 

  123. Paczyński, B.: URCA processes in convective stellar cores. Astron. Lett. 15, 147–149 (1973)

    Google Scholar 

  124. Paczynski, B.: Evolution of stars with M ≤ 8 M . In: R. Tayler (ed.) Proc. Symp IAU No. 66 Late Stages of Stellar Evolution, pp. 62–69. Reidel, Dordrecht (1974)

    Chapter  Google Scholar 

  125. Paczynski, B.: Helium flush in population I stars. Astrophys. J. 192, 483–485 (1974)

    Article  ADS  Google Scholar 

  126. Paczynski, B.: Core mass-interflash period relation for double-shell source stars. Astrophys. J. 202, 558–560 (1975)

    Article  ADS  Google Scholar 

  127. Paczynski, B.: Helium shell flashes. Astrophys. J. 214, 812–818 (1977)

    Article  ADS  Google Scholar 

  128. Paczynski, B., Wiita, P.: Thick accretion disks and supercritical luminosities. Astron. Astrophys. 88, 23–31 (1980)

    ADS  Google Scholar 

  129. Paczynski, B., Ziolkovski, J.: On the origin of planetary nebulae and Mira variables. Acta Astron. 18, 255–266 (1968)

    ADS  Google Scholar 

  130. Poe, C.H., Owocki, S.P., Castor, J.I.: The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model. Astrophys. J. 358, 199–213 (1990)

    Article  ADS  Google Scholar 

  131. Pols, O.R., Tout, Ch.A., Eggleton, P.P., Han, Zh.: Approximate input physics for stellar modeling. Mon. Not. R. Astron. Soc. 274, 964–974 (1995)

    ADS  Google Scholar 

  132. Reimers, D.: Winds in red giants. In: Iben, I., Renzini, A. (eds.) Physical Processes in Red Giants. Reidel, Dordrecht, pp. 269–284 (1981)

    Chapter  Google Scholar 

  133. Rublyov, S.V., Cherepazshuk, A.M.: [Wolf–Rayet Stars]. In: Non-stationary Phenomena and Stellar Evolution, pp. 47–124. Nauka, Moscow (1974)

    Google Scholar 

  134. Rogers, F.J., Iglesias, C.A.: Rosseland mean opacities for variable compositions. Astrophys. J. 401, 361–366 (1992)

    Article  ADS  Google Scholar 

  135. Rose, W., Smith, R. (1970): Final evolution of a low-mass star I. Astrophys. J. 159, 903–912

    Article  ADS  Google Scholar 

  136. Roth, M., Weigert, A.: Example of multiple solutions for equilibrium stars with helium cores. Astron. Astrophys. 20, 13–18 (1972)

    ADS  Google Scholar 

  137. Rybicki, G.V., Owocki, S.P., Castor, J.I.: Instabilities in line-driven stellar winds. IV. Linear perturbations in three dimensions. Astrophys. J. 349, 274–285 (1990)

    Google Scholar 

  138. Scalo, J.: Observations and theories of mixing in red giants. In: Iben, I., Renzini, A. (eds.) Physical Processes in Red Giants, pp. 77–114. Reidel, Dordrecht (1981) Progr. Theor. Phys. 62, 957–968

    Google Scholar 

  139. Schaller, G., Schaerer, G., Meynet, G., Maeder, A.: New grids of stellar models from 0. 8 to 120 M at Z=0. 02 and Z=0. 001. Astron. Astrophys. Suppl. 96, 269–331 (1992)

    Google Scholar 

  140. Schatzman, E., Praderie, F.: The Stars. Springer, Berlin (1993)

    Book  Google Scholar 

  141. Schonberner, D.: Asymptotic giant branch evolution with steady mass loss. Astron. Astrophys. 79, 108–114 (1979)

    ADS  Google Scholar 

  142. Schonberner, D.: Late stages of stellar evolution: central stars of planetary nebulae. Astron. Astrophys. 103, 119–130 (1981)

    ADS  Google Scholar 

  143. Schonberner, D.: Late stages of stellar evolution II. Mass loss and the transition of asymptotic giant branch into hot remnant. Astrophys. J. 272, 708–714 (1981)

    Google Scholar 

  144. Schonberner, D.: Late stages of stellar evolution III. The observed evolution of central stars of planetary nebulae. Astron. Astrophys. 169, 189–193 (1986)

    Google Scholar 

  145. Schwarzschild, M.: Structure and Evolution of the Stars. Princeton University Press, Princeton (1958)

    Google Scholar 

  146. Schwarzschild, M., Harm, R.: Red giants of population II. II. Astrophys. J. 139, 158–165 (1962)

    Article  ADS  Google Scholar 

  147. Schwarzschild, M., Harm, R.: Thermal instability in non-degenerate stars. Astrophys. J. 142, 855–867 (1965)

    Article  ADS  Google Scholar 

  148. Schwarzschild, M., Harm, R.: Hydrogen mixing by helium-shell flashes. Astrophys. J. 150, 961–970 (1967)

    Article  ADS  Google Scholar 

  149. Schwarzschild, M., Harm, R.: Stability of the sun against spherical thermal perturbations. Astrophys. J. 184, 5–8 (1973)

    Article  ADS  Google Scholar 

  150. Schwarzschild, M., Sebberg, H.: Red giants of population II. I. Astrophys. J. 136, 150–157 (1962)

    Article  ADS  Google Scholar 

  151. Shapiro, S.L., Teukolsky, S.A.: Black holes, white dwarfs, and neutron stars: The physics of compact objects. Wiley-Interscience, NY (1983)

    Book  Google Scholar 

  152. Shaviv, G., Salpeter, E.E.: Convective overshooting in stellar interior models. Astrophys. J. 184, 191–200 (1973)

    Article  ADS  Google Scholar 

  153. Shklovski, I.S.: On the nature of planetary nebulae and their nuclei. Astron. J. (Sov. Astron.) 33, 315–329 (1956)

    Google Scholar 

  154. Sobolev, V.V.: Moving envelopes of stars. Harvard University Press, Cambridge (1960)

    Google Scholar 

  155. Spruit, H.: The rate of mixing in semiconvective zones. Astron. Astrophys. 253, 131–138 (1992)

    ADS  MATH  Google Scholar 

  156. Stein, J., Barkat, Z., Wheeler, J.C.: The role of kinetic energy flux in the convective URCA process. Astrophys. J. 523, 381–385 (1999)

    Article  ADS  Google Scholar 

  157. Stothers, R., Chin, C.: Stellar evolution at high mass based on the Ledoux criterion for convection. Astrophys. J. 179, 555–568 (1973)

    Article  ADS  Google Scholar 

  158. Stothers, R., Chin, C.: Stellar evolution at high masses including the effects of a stellar wind. Astrophys. J. 233, 267–279 (1979)

    Article  ADS  Google Scholar 

  159. Stothers, R., Chin, C.: Stellar evolution at high mass with convective core overshooting. Astrophys. J. 292, 222–227 (1985)

    Article  ADS  Google Scholar 

  160. Stothers, R., Chin, C.: Iron and molecular opacities and the evolution of population I stars. Astrophys. J. 412, 294–300 (1993)

    Article  ADS  Google Scholar 

  161. Stothers, R., Chin, C.: Galactic stars applied to tests of the criterion for convection and semiconvection in an inhomogeneous star. Astrophys. J. 431, 797–805 (1994)

    Article  ADS  Google Scholar 

  162. Strom, S.E., Strom, K., Rood, R.T., Iben, I.: On the evolutionary status of stars above the horizontal branch in globular clusters. Astron. Astrophys. 8, 243–250 (1970)

    ADS  Google Scholar 

  163. Sweigart, A.: A method for suppression of the thermal instability in helium-shell burning stars Astrophys. J. 168, 79–97 (1971)

    ADS  Google Scholar 

  164. Sweigart, A.: Initial asymptotic branch evolution of population II stars. Astron. Astrophys. 24, 459–464 (1973)

    ADS  Google Scholar 

  165. Sweigart, A., Mengel, J., Demarque, P.: On the origin of the blue halo stars. Astron. Astrophys. 30, 13–19 (1974)

    ADS  Google Scholar 

  166. Tsuruta, S., Cameron, A.G.W.: URCA shells in dense stellar interiors. Astrophys. Space. Sci. 7, 374–395 (1970)

    Article  ADS  Google Scholar 

  167. Tutukov, A.V., Fadeev, Yu.A.: The formation of an extended envelope around pulsating star. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 49, 48–63 (1981)

    Google Scholar 

  168. Uus, U.: Calculations of the structure of thin nuclear-burning shells in stellar models. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 13, 126–144 (1969)

    Google Scholar 

  169. Uus, U.: The evolution of 1. 5, 2. 3 and 5 M ⊙ stars on the stage of carbon core growth. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 17, 3–24 (1970)

    Google Scholar 

  170. Uus, U.: The penetration of the convective envelope of a star in the nuclear-burning zone. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 20, 60–63 (1971)

    Google Scholar 

  171. Varshavskii, V.I.: Evolution of massive stars with the inclusion of semiconvection. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 21, 25–45 (1972)

    Google Scholar 

  172. Varshavskii, V.I., Tutukov, A.V.: Evolution of massive stars. Astron. J. 52, 227–233 (1975) (Sov. Astron. 19, 142–145, 1975)

    Google Scholar 

  173. Vanbeveren, D.: Evolution with mass loss: massive stars, massive binaries. PhD thesis, Brussels University (1980)

    Google Scholar 

  174. Wagenhuber, J., Weiss, A.: Termination of AGB-evolution by hydrogen recombination. Astron. Astrophys. 290, 807–814 (1994)

    ADS  Google Scholar 

  175. Weaver, T., Woosley, S.: Evolution and explosion of massive stars. Ann. N. Y. Acad. Sci. 336, 335–357 (1980)

    Article  ADS  Google Scholar 

  176. Weaver, T., Zimmerman, G., Woosley, S.: Presupernova evolution of massive stars. Astrophys. J. 225, 1021–1029 (1978)

    Article  ADS  Google Scholar 

  177. Weigert, A.: Sternentwicklung VI. Entwicklung mit neutrinoverlusten und thermische pulse der Helium-Schalenquelle bei einem Stern von 5 sonnenmassen. Z. Astrophys. 64, 395–425 (1966)

    Google Scholar 

  178. Wiedemann, V.: The initial/final mass relation for stellar evolution with mass loss. In: Chiosi, C., Stalio, R. (ed.) Effects of Mass Loss on Stellar Evolution, pp. 339–349. Reidel, Dordrecht (1981)

    Chapter  Google Scholar 

  179. Wilson, J.R., Mayle, R., Woosley, S., Weaver, T.: Stellar core collapse and supernova. Ann. N.Y. Acad. Sci. 470, 267–293 (1986)

    Google Scholar 

  180. Wood, P.R.: Dynamical models of asymptotic-giant-branch stars. In: Ledoux, P. et al. (ed.) Proc. IAU Symp. No. 59: Stellar Instability and Evolution, pp. 101–102. (Reidel, Dordrecht) (1974)

    Google Scholar 

  181. Wood, P.R.: Pulsation and mass loss in Mira variables. Astrophys. J. 227, 220–231 (1979)

    Article  ADS  Google Scholar 

  182. Wood, P.R., Faulkner, D.J.: Hydrostatic evolutionary sequences for the nuclei of planetary nebula. Astrophys. J. 307, 659–674 (1986)

    Article  ADS  Google Scholar 

  183. Woosley, S.E., Langer, N., Weaver, T.A: The presupernova evolution and explosion of helium stars that experience mass loss. Astrophys. J. 448, 315–338 (1995)

    Google Scholar 

  184. Woosley, S., Weaver, T.: Theoretical models for type I and type II supernovae. In: Audouze, J., Mathieu N. (eds.) Nucleosynthesis and Its Implications on Nuclear and Particle Physics, pp. 145–166. Reidel, Dordrecht (1986)

    Chapter  Google Scholar 

  185. Zahn, J.-P.: Convective penetration in stellar interiors. Astron. Astrophys. 252, 179–188 (1991)

    ADS  Google Scholar 

  186. Ziolkowski, J.: Evolution of massive stars. Acta Astron. 22, 327–374 (1972)

    ADS  Google Scholar 

  187. \(\acute{Z}\)ytkov, A.: On the stationary mass outflow from stars I. The computational method and results for 1 \({M}_{\odot }\) star. Acta Astron. 22, 103–139 (1972)

    Google Scholar 

  188. \(\acute{Z}\)ytkov, A.: On the stationary mass outflow from stars II. The results for 30 M star. Acta Astron. 23, 121–134 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady S. Bisnovatyi-Kogan .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bisnovatyi-Kogan, G.S. (2010). Nuclear Evolution of Stars. In: Stellar Physics. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14734-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14734-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14733-3

  • Online ISBN: 978-3-642-14734-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics