Skip to main content

Pre-Main Sequence Evolution

  • Chapter
  • First Online:
Stellar Physics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1584 Accesses

Abstract

The matter in the Universe (its barionic component) is concentrated mainly in stars. Inside galaxies, stars contain more than 90% of the matter, and in galactic clusters, due to the existence of intercluster gas, stars contain more than 70% of the matter. The presence of heavy elements (heavier than carbon) in the intercluster gas, with an abundance of the order of one third of solar gas, indicates that almost all barionic matter in the Universe went through a stellar stage. According to modern views, the enrichment of intercluster gas by heavy elements happens due to outflow of matter from galaxies, where the production of heavy elements takes place due to stellar evolution. It follows from the cosmological models of a hot Universe that only hydrogen and helium, with very small additions of lithium, beryllium and boron, were produced in the Big Bang. All heavier elements, starting from carbon, are produced as a result of stellar evolution (see Sect.4.4, Vol. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a critically rotating star, the centrifugal force at the equator counterbalances the surface gravity.

  2. 2.

    In orthohydrogen, nuclear and electron spins are parallel, while in parahydrogen they are antiparallel. The orthohydrogen energetic state is slightly higher than the parahydrogen state; transitions between these states give rise to an emission line of 21 cm in the radio range.

  3. 3.

    The quantity \(\Lambda (T){n}_{e}({n}_{e} + {n}_{H})\ \mathrm{erg\ c{m}^{-3}\ {s}^{-1}}\) represents the energy amount emitted by 1 cm3 of plasma in 1 s; Λ(T) is evaluated in [313].

References

  1. Allen, K.U.: Astrophysical Quantities Athlone Press, University of London (1973)

    Google Scholar 

  2. Ambartzumian, V.A., Fuors. A.: Astron. J. 7, 557–572 (1971) (Astrophys 7, 331–339, 1971)

    Google Scholar 

  3. Bisnovatyi-Kogan, G.S.: Pre-main-sequence stellar evolution. In: Sugimoto, D., Lamb, D., Schramm, D. (eds.) Proc. Symp. IAU Mo. 93: Fundamental problems of stellar evolution, pp. 87–97. Reidel, Dordrecht (1981)

    Google Scholar 

  4. Bisnovatyi-Kogan, G.S.: Angular velocity distribution in convective regions and the origin of solar differential rotation. Solar Phys. 128, 299–304 (1990)

    Article  ADS  Google Scholar 

  5. Bisnovatyi-Kogan, G.S., Vainshtein, S.I.: Generation of magnetic fields in rotating stars and quasars. Astrophys. J. Lett 8, 151–152 (1971)

    Google Scholar 

  6. Bisnovatyi-Kogan, G.S.: On the role of radiation in the solar wind formation. Mekh. Jidk. Gaza No 4, 182–183 (1968)

    Google Scholar 

  7. Bisnovatyi-Kogan, G.S., Blinnikov, S.I.: Hot corona around a disk accreting onto black hole and Cyg X-1 model. PAJ 2, 489–493 (1976) (Sov. Astron. Lett. 2, 191–193, 1976)

    Google Scholar 

  8. Bisnovatyi-Kogan, G.S., Blinnikov, S.I.: Propagation of waves in medium with high radiative density. Preprint of IKI Pr 421 (1978)

    Google Scholar 

  9. Bisnovatyi-Kogan, G.S., Blinnikov, S.I., Kostyuk, N.D., Fedorova, A.V.: Evolution of rapidly rotating stars on the stage of gravitational contraction. Astron. J. 56, 770–780 (1979) (Sov. Astron. 23, 432–437, 1979)

    Google Scholar 

  10. Bisnovatyi-Kogan, G.S., Blinnikov, S.I., Fedorova, A.V.: The Role of Rotation in Young Star Evolution. In Early stages of stellar evolution, pp. 40–46. Kiev, Naukova Dumka (1977)

    Google Scholar 

  11. Bisnovatyi-Kogan, G.S., Zel’dovich, Ya.B.: Adiabatic Outflow and equilibrium states with energy excess. Astron. J. 43, 1200–1206 (1966) (Sov. Astron. 10, 959–963, 1967)

    Google Scholar 

  12. Bisnovatyi-Kogan, G.S., Lamzin, S.A.: Outflow out of stars on the stage of gravitational contraction. Astron. J. 53, 742–749 (1976) (Sov. Astron. 20, 418–422, 1976)

    Google Scholar 

  13. Bisnovatyi-Kogan, G.S., Lamzin, S.A.: The matter outflow out of stars on early evolutionary stages. In Early stages of stellar evolution, pp. 107–118. Kiev, Naukova Dumka (1977)

    Google Scholar 

  14. Bisnovatyi-Kogan, G.S., Lamzin, S.A.: Models for outflowing envelopes of T Tauri stars. Astron. J. 54, 1268–1280 (1977) (Sov. Astron. 21, 720–727, 1977)

    Google Scholar 

  15. Bisnovatyi-Kogan, G.S., Lamzin, S.A.: The chromosphere, corona and X-ray emission of RU Lupi, a T Tauri star. PAJ 6, 34–38 (1980) (Sov. Astron. Lett. 6, 17–20, 1980)

    Google Scholar 

  16. Blinnikov, S.I.: Self-consistent field method in the theory of rotating stars. Astron. J. 52, 243–254 (1975) (Sov. Astron. 19, 151–156, 1975)

    Google Scholar 

  17. Bodenheimer, P., Ostriken, J.: Rapidly rotating stars. IV. Pre-main sequence evolution of massive stars. Astrophys. J. 161, 1101–1115 (1970)

    Google Scholar 

  18. Cabrit, S., Bertout, C.: CO lines formation in bipolar flows. I. Accelerated outflows. Astrophys. J. 307, 313–323 (1986)

    Article  ADS  Google Scholar 

  19. Caughlan, G.R., Fowler, W.A.: Thermonuclear reaction rates V. Atom. Data Nucl. Data Table 40, 283–334 (1988)

    Article  ADS  Google Scholar 

  20. Chandrasekhar, S.: An introduction to the study of stellar structure. University Chicago Press, Chicago (1939)

    Google Scholar 

  21. Chiosi, C., Stalio, R. (eds.): Effects of mass loss in stellar evolution. In: Proc. IAU Coll. No. 59 Reidel, Dordrecht (1981)

    Google Scholar 

  22. Cohen, M., Kuhi, L.V.: Observational studies of pre-main-sequence evolution. Astrophys. J. Suppl. 41, 743–843 (1979)

    Article  ADS  Google Scholar 

  23. Colpi, M., Shapiro, S., Teukolsky S.: A hydrodynamical model for the explosion of a neutron star just below the minimum mass. Astrophys. J. 414, 717–734 (1993)

    Article  ADS  Google Scholar 

  24. Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling in a low-density plasma. Astrophys. J. 157, 1157–1167 (1969)

    Article  ADS  Google Scholar 

  25. Cox, A., Stuart, G.: Radiative absorption and heat conductivity: opacities for 25 stellar mixtures. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 15, 3–103 (1969)

    Google Scholar 

  26. Drobyshevskii, E.M.: Outward transport of angular momentum by gas convection and the equatorial acceleration of the sun. Sol. Phys. 51, 473–479 (1977)

    Article  ADS  Google Scholar 

  27. Durney, B.R.: The interaction of rotation with convection. In: Slettebak, A. (ed.) Stellar Rotation, pp. 30–36. Reidel, Dordrecht (1970)

    Chapter  Google Scholar 

  28. Durney, B.R.: On theories of solar rotation. In: Bumba, V., Kleczek, J. (ed.) Basic Mechanisms of Solar Activity, pp. 243–295. Reidel, Dordrecht (1976)

    Chapter  Google Scholar 

  29. Dyck, H.H., Simon, Th., Zukerman, B.: Discovery of an infrared companion to T Tauri. Astrophys. J. Lett. 255, L103–L106 (1982)

    Article  ADS  Google Scholar 

  30. Errico, L., Vittone, A. (eds.): Stellar Jets and Bipolar Outflows. Proc. OAC 6, Capri 1991. Kluwer (1993)

    Google Scholar 

  31. Ezer, D., Cameron, A.G.W.: Pre-main-sequence stellar evolution with mass loss. Astrophys. Space Sci. 10, 52–70 (1971)

    Article  ADS  Google Scholar 

  32. Faulkner, J., Roxburgh, I.W., Strittmatter, P.A.: Uniformly rotating main-sequence stars. Astrophys. J. 151, 203–216 (1968)

    Article  ADS  Google Scholar 

  33. Fyodorova, A.V.: The effect of magnetic field on the minimum mass of a main-sequence star. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 42, 95–109 (1978)

    Google Scholar 

  34. Fyodorova, A.V., Blinnikov, S.I.: The effect of accretion and rotation on the minimum mass of a main-sequence star. Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 42, 75–94 (1978)

    Google Scholar 

  35. Feigelson, E.D., DeCampli, W.M.: Observations of X-ray emission from T Tauri stars. Astrophys. J. Lett. 243, L89–L94 (1981)

    Article  ADS  Google Scholar 

  36. Forestini, M.: Low-mass stars: pre-main sequence evoluton and nucleosynthesis. Astron. Astrophys. 285, 473–488 (1994)

    ADS  Google Scholar 

  37. Fowler, W., Caughlan, G., Zimmerman, B.: Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525–570 (1967)

    Article  ADS  Google Scholar 

  38. Fowler, W., Caughlan, G., Zimmerman, B.: Thermonuclear reaction rates II. Annu. Rev. Astron. Astrophys. 13, 69–112 (1975)

    Article  ADS  Google Scholar 

  39. Gahm, G.F.: X-ray observations of T Tauri stars. Astrophys. J. Lett. 242, L163–L166 (1980)

    Article  ADS  Google Scholar 

  40. Gahm, G.F., Fradga, K., Liseau, R., Dravins, D.: The far UV spectrum of T Tauri star RU Lupi. Astron. Astrophys. 73, L4–L6 (1979)

    ADS  Google Scholar 

  41. Giovanelli, F., Bisnovatyi-Kogan, G.S., Golynskaya, I.M., et al.: Coordinated X-ray, ultraviolet and optical observations of T Tauri stars. In: Oda, M., Giacconi, R. (eds.) Proc. symp. int. X-ray astronomy 84, Bologna, pp. 77–80 (1984)

    Google Scholar 

  42. Godnev, I.N.: Calculation of thermodynamic functions on the base of molecular data. Moscow, Gostekhizdat (1956)

    Google Scholar 

  43. Greenspan, H.P.: The theory of rotating fluids. Cambridge, Cambridge University Press (1968)

    MATH  Google Scholar 

  44. Grossman, A.: The surface boundary condition and approximate equation of state for low-mass stars. In: Kumar, Sh. (ed.) Proc. Symp. Low-luminosity Stars, pp. 247–254. Gordon and Breach (1969)

    Google Scholar 

  45. Grossman, A.: Evolution of low-mass stars. I. Contraction to the main sequence. Astrophys. J. 161, 619–632 (1970)

    Article  Google Scholar 

  46. Grossman, A., Mutschlecner, J., Pauls, T.: Evolution of low-mass stars. II. Effects of premodal deuterium burning and nongray surface condition during pre-main-sequence contraction. Astrophys. J. 162, 613–619 (1970)

    Google Scholar 

  47. Grossman, A., Graboske, H., Jr.: Evolution of low-mass stars. III. Effects of non-ideal thermodynamic properties during the pre-main-sequence contraction. Astrophys. J. 164, 475–490 (1971)

    Google Scholar 

  48. Hanson, R., Jones, B.F., Lin, D.N.C.: The astrometric position of T Tauri and the nature of its companion. Astrophys. J. Lett. 270, L27–L30 (1983)

    Article  ADS  Google Scholar 

  49. Harris, M., Fowler, W., Caughlan, G. Zimmerman, B.: Thermonuclear reaction rates III. Annu. Rev. Astron. Astrophys. 21, 165–176 (1983)

    Google Scholar 

  50. Hayashi, Ch.: Evolution of protostars. Annu. Rev. Astron. Astrophys. 4, 171–192 (1966)

    Article  ADS  Google Scholar 

  51. Hayashi, Ch., Hoshi, R., Sugimoto, D.: Evolution of stars. Progr. Theor. Phys. Suppl. 22, 1–183 (1962)

    Article  ADS  Google Scholar 

  52. Herbig, G.: The widths of absorption lines in T Tauri-like stars. Astrophys. J. 125, 612–613 (1957)

    Article  ADS  Google Scholar 

  53. Herbig, G.: Eruptive phenomena in early stellar evolution. Astrophys. J. 217, 693–715 (1977)

    Article  ADS  Google Scholar 

  54. Hoxie, D.: The structure and evolution of stars of very low mass. Astrophys. J. 161, 1083–1099 (1970)

    Article  ADS  Google Scholar 

  55. Iben, I., Jr.: Stellar evolution. I. The approach to the main sequence. Astrophys. J. 141, 993–1018 (1965)

    Article  ADS  Google Scholar 

  56. Kippenhahn, R.: Differential rotation in stars with convective envelopes. Astrophys. J. 137, 664–678 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Knunyanz, I.L. (ed.): Deuterium, Chemical encyclopedic dictionary. Sovetskaya Entsiklopediya, Moscow, p. 149 (1983)

    Google Scholar 

  58. Kraft, R.P., Greenstein, J.L.: A new method for finding faint members of the Pleiads. In: Low Luminosity Stars, pp. 65–82. Gordon and Breach, New York (1969)

    Google Scholar 

  59. Krasnov, N.F.: Aerodynamics. Moscow, Vysshaya Shkola (1971)

    Google Scholar 

  60. Kuan, P.: Emission envelopes of T Tauri stars. Astrophys. J. 202, 425–432 (1975)

    Article  ADS  Google Scholar 

  61. Kuhi, L.V.: Mass loss from T Tauri stars. Astrophys. J. 140, 1409–1433 (1964)

    Article  ADS  Google Scholar 

  62. Landau, L.D., Lifshitz, E.M.: Statistical physics I. Nauka, Moscow (1976)

    Google Scholar 

  63. Larson, R.: The evolution of protostars – theory. Found. Cosm. Phys. 1, 1–70 (1973)

    ADS  Google Scholar 

  64. Lucy, L.B.: Gravity-darkening for stars with convective envelopes. Z. Astrophys. 65, 89–92 (1967)

    ADS  Google Scholar 

  65. Menard, F., Monin, J.-L., Angelucci, F., Rougan, D.: Disks around pre-main-sequence binary systems: the case of Haro 6-10. Astrophys. J. Lett. 414, L117–L120 (1993)

    Article  ADS  Google Scholar 

  66. Mewe, R.: X-ray spectroscopy of stellar coronae. Astron. Astrophys. Rev. 3, 127–168 (1991)

    Article  ADS  Google Scholar 

  67. Moss, D.: Models for rapidly rotating pre-main-sequence stars. Mon. Not. R. Astron. Soc. 161, 225–237 (1973)

    ADS  Google Scholar 

  68. Nadyozhin, D.K.: Evolution of a star with M=30 M ⊙ in hydrogen-burning phase., Nauchnyie Informatzii Astronomicheskogo Soveta AN SSSR (Scientific Information of the Astonomical Council of the Academy of Sciences of the USSR), Issue 4, 37–64 (1966)

    Google Scholar 

  69. Neuhäuser, R., Sterzik, M.F., Schmitt, J.H.M.M., Wichmann, R., Krautter, J.: ROSAT survey observation of T Tauri stars in Taurus. Astron. Astrophys. 297, 391–417 (1995)

    ADS  Google Scholar 

  70. Paczynski, B.: Envelopes of red supergiant. Acta Astron. 19, 1–22 (1969)

    ADS  Google Scholar 

  71. Pallavicini, R.: X-ray emission from stellar coronae. Astron. Astrophys. Rev. 1, 177–207 (1989)

    Article  ADS  Google Scholar 

  72. Papaloizou, J.C.B., Whelan, J.A.J.: The structure of rotating stars: the J2 method and results for uniform rotation. Mon. Not. R. Astron. Soc. 164, 1–10 (1973)

    ADS  Google Scholar 

  73. Parker, E.N.: Interplanetary dynamical processes. Interscience, New York (1963)

    MATH  Google Scholar 

  74. Petrov, P.P.: T Tauri stars: modern observational data. In: Early Stages of Stellar Evolution, pp. 66–100. Naukova Dumka, Kiev (1977)

    Google Scholar 

  75. Rüdiger, G.: Differential rotation and stellar convection, sun and solar-type stars. Akademie-Verlag, Berlin (1989)

    Google Scholar 

  76. Stahler, S.: The birthline for low-mass stars. Astrophys. J. 274, 822–829 (1983)

    Article  ADS  Google Scholar 

  77. Terebey, S., Chandler, C.J., Andre, P.: The contribution of disks and envelopes to the millimeter continuum emission from very low-mass stars. Astrophys. J. 414, 759–772 (1993)

    Article  ADS  Google Scholar 

  78. Upton, I.K.L., Little, S.J., Dworetsky, M.M.: Dynamical stability in pre-main-sequence stars. Astrophys. J. 154, 597–611 (1968)

    Article  ADS  Google Scholar 

  79. Vandakurov, Yu.V.: Convection in the Sun and 11-year cycle. Leningrad, Nauka (1976)

    Google Scholar 

  80. Vartanyan, Yu.L., Ovsepyan, A.V., Adzhjyan, G.S.: On the stability and radial pulsations of rotating neutron stars. Astron. J. 50, 48–59 (1973) (Sov. Astron. 17, 30–37, 1973)

    Google Scholar 

  81. Vardya, M.S.: Hydrogen–Helium adiabats for late type stars. Astrophys. J. Suppl. 4, 281–336 (1960)

    Article  ADS  Google Scholar 

  82. Vardya, M.S.: Thermodynamics of a solar composition gaseous mixture. MNRAS 129, 205–213 (1965)

    ADS  MATH  Google Scholar 

  83. Weir, A.D.: Axisymmetric convection in rotating sphere. Part I. Stress-free surface. J. Fluid Mech. 75, 49–79 (1976)

    Article  MATH  Google Scholar 

  84. Wilson, L.A.: Fe I fluorescence in T Tauri stars II. Clues to the velocity field in the circumstellar envelopes. Astrophys. J. 197, pp. 365–370 (1975)

    Google Scholar 

  85. Yorke, H.: Protostars and their evolution. In: Proc. ESO Conf. on Scientific importance of high angular resolution of infrared and optical wavelength (Garching), pp. 319–340 (1981)

    Google Scholar 

  86. Zel’dovich, Ya.B.: Hydrodynamical stability of star. Vopr. Kosmog. 9, 157–170 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady S. Bisnovatyi-Kogan .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bisnovatyi-Kogan, G.S. (2010). Pre-Main Sequence Evolution. In: Stellar Physics. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14734-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14734-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14733-3

  • Online ISBN: 978-3-642-14734-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics